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Optimal Step-Function Approximation of Load Duration
Curve Using Evolutionary Programming (EP)

Eda Azuin Othman

Abstract— This paper proposes Evolutionary
Programming (EP) to determine optimal step-function
approximation of load duration curve (LDC) at minimum
error. The EP model optimally discretized a load duration
curve based on Malaysia’s hourly load data in year 2012 for
three and six segments of discretized LDC. The EP is
developed using MatLab programming software. Results show
that EP technique is able to provide optimum break points of
discretized LDC at minimum error. In the analysis, it shows
that the 6-step functions of LDC has a lower total error than
the 3-step functions of LDC. The EP technique proposed in this
paper is also compared with Dynamic Programming (DP)
technique. Results show that EP provides a much shorter
elapsed time than DP and have a lower total error for 3-step
function of LDC. This EP-based model step function
approximation of LDC is very useful for the power system
planner to develop accurate generation expansion planning.

Keywords-Evolutionary Programming (EP), Load Duration
Curve, Minimization of Error

I INTRODUCTION

In electrical utilities, load can be considered as the total
electricity used during a given period time, such as an hour.
These loads can be plotted for a day, or a week even for a
year, and these curves are known as load curves. However,
it is a considerable value to rearrange the loads into a
cumulative curve with the hour of highest usage plotted that
called as Load Duration Curve (LDC). From the LDC
plotted, we can get the approximated load generation curve
by a step function normally, of three or six steps. For
example, the PIES model of the Department of Energy uses
a three-step approximation for a LDC extending over a full
year which is 8760 hours. This is based on the concepts of
base load and peak load electrical generation, with the
remainder being intermediate or cycling generation thus
forming three classes of generation.

The step function of LDC is usually produced by
sketching or in some other ad hoc manner. This
approximated discretized LDC is usually used for planning
generation expansion. However, because the expected result
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of expansion plant is very dependent on the shape of this
discretized LDC, it is necessary to use a more rigorous
technique to discretize the LDC. Thus, an optimum and
rigorous technique to determine a more accurate step
function approximation of LDC is developed in this paper
using Evolutionary Programing (EP). This new method is
tested to get the optimal step-function approximation for
Malaysia’s LDC in 2012.

A. Load Duration Curve

LDC analysis looks at the cumulative frequency of
historic load data over a specified period. A load duration
curve relates load values to the percent of time those values
have been met or exceeded. The y-axis represents the load
value associated with the time in a year hourly. LDC
development typically uses daily average load used, which
are sorted from the highest value to the lowest.

The first attempt was proposed by Loney [2] who used
Dynamic Programming with six steps of approximation.
The LDC considered the F and T as the number of hours the
three segments are defined by the break points t1 and t2 and
the corresponding heights g1, g2 and ¢g3. Since the area
under the LDC is equal to the total electrical generation in
the period, the area under the step-function approximation
should be equal to the area under the LDC for each step.
They also introduced a penalty function, p(e(x)), to solve
the optimization problem where p(e(x)) is the penalty to be
paid per unit of mismatch at x and e(x) is the amount of
mismatch at x. The authors of [1] extended Loney’s to
widen the application.

The authors of [3] used the same concept as [1,2] to
discretized LDC. Since the price duration curve (PDC) is
sensitive to the shape of the LDC and calculated according
to each segment of the discretized LDC, an optimal
approach to discretize the LDC is introduced prior to the
investment evaluation model using dynamic programming.

Il. METHODOLOGY

Evolutionary Programming (EP) is a useful method to
minimize the error in approximating the step-function of
LDC using MatLab software. The objective of EP is to
optimize any fitness which can be represented using
mathematical equation. The evolutionary programming
consists of three types which are classical, adaptive and
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Meta. The mutation technique for each type of EP is
different.

A EP-based Optimal Step Function of Load Duration
Curve (LDC).

Figure 1 shows a three-step approximation of a typical
LDC that is used to illustrate the methodology.

Discretized Load Duration Curve
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Figure 1: Typical LDC with three step approximations

The LDC is denoted by F and T is the number of hours
being considered. The three segments are defined by the
break points t; and t, and the corresponding heights g, g,
and gs. Since the area under the LDC is equal to the total
electrical generation in the period, the area under the step-
function approximation should be equal to the area under
the LDC for each step. Each g; can be expressed
mathematically as a function of t; and t, as follows;

9= )y Foodx (1)
92 = J Fodx e
95 = 7o Jo, FO0dx ©

In Figure 1, area A; above the first segment and under
the LDC can be interpreted as representing a deficit of
electrical generation and the area B; above the LDC but
below the first segment as representing an excess of
generation. Areas A,, B,, A3 and B; can be interpreted in the
same way.

The optimization problem is solved by minimizing the
amount of mismatch e(x) i.e. the error between the
discretized LDC and actual LDC, where e(x) can be
expressed as |F(x)-g(x)|]. The goal of this optimization
problem is to find the value of t; and t, in such a way that

the total mismatch is minimized. This problem can be
solved using EP where the amount of mismatch to be
minimized is the fitness value and the random x values is the
break points of the optimum discretized LDC.

The simulations were carried out for a three and six
steps approximation of an LDC. The hourly load data is
from the Malaysia’s LDC for the load from 1st January
2012 to 31st December 2012 with 8784 hours.

Flowchart in Figure 2 shows the steps taken in
determining the break points x for the optimum step
function approximation of LDC using EP optimization

technique.

Import Malaysia Hourly
Load data 2012 to get
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Figure 2: Flowchart of Evolutionary Programming

B. Evolutionary Programming (EP)

Evolutionary Programming (EP) is one of the methods
that can be used in optimizing the fitness which normally
represented in mathematical equations. The evolutionary
programming (EP) is a method for simulating evolution and
it is similar to evolutionary strategy (ES). In EP, selection is
performed using comparison of randomly chosen set of
other individuals whereas ES typically uses deterministic
selection in which individuals are purged from the
population. It is similar to a genetic algorithm, but models
only the behavioral linkage between parents and their
offspring rather than see the king to emulate specific genetic
operators for nature such as the encoding of behavior in a
genome and recombination by genetic crossover.
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The fitness can either be maximized or minimized
depending on the desired output needed. In this paper, the
objective function is to minimize the error, e(x) between the
discretized LDC and actual LDC. Below are the steps of EP
method based on the pseudo code in MatLab programming;

Initialization

Initialization is functioning to generate the random
numbers. These random numbers are basically the
controlled variables in objective function equation. In this
EP-based 3-step functions approximation of LDC, the
controlled variables are xi, X,, and x3, where represents the
break points of optimum discretized LDC i.e. hours in data
from 8760 hours per year. The constraints or the limit range
of each variable are set in this phase. The command used to
generate random numbers is as follows:

Xi = random (x,y) X (A+ B) 4)
where: X : no ofrow

y :no ofcolumn

A : the of fset

B : the minimum number

In this step, an initial twenty populations of trial
solutions are chosen at random. The populations are
generated to meet the constraint set, but no definite answers
are available as to how many solutions are appropriate
(other than >1). While the random numbers generated does
not complies the requirement, the program will keep
running until it meets a number that fulfill the constraints.
The sets of accepted numbers generated will form a
population which will be used later in other steps ahead. In
this paper for a 3-steps function approximation of LDC, the
generated random numbers are x;, X,, and xs, where
basically these numbers are consider as the parents.

ii. Fitness

Next step is fitness which acts as a function or equation
to be optimized, it can be a single mathematical equation or

a set of sub-program or subroutine. There have two types of yjj.

fitness which are fitness 1 and fitness 2, but the fitness 2 is
calculated after the mutation. Fitness equation can be either
a single mathematical equation or a set of sub-program. In
this study, the fitness is to minimize the error of discretized
load duration curve.

iii.  Mutation

The mutation function is to generate offspring or
children and normally, it use Gaussian Mutation Technique.
In mutation process, offspring is produced from the parent

generated in initialization step. There are various obtainable
techniques that can be used to carry out the mutation
process. The basic Gaussian’s formula is shown below:

Xivmj = %ij + N[0, B(Xjmax — Xjmin) (L)] (%)

fmax

where: Xiym,j ¢ Of fsprimg
X;j ¢ parents

£ search step

Xjmax } Max parents

Xjmin * Minparents

fmax * maxfitess

iv. Combination

After the new offspring has been produced, the
combination process which combine the parents and
offspring in series (by rows) and number of rows will be
doubled.

arents
p 2mxn = O (6)

Combination = .
of fsprings mxn

v. Selection

The selection process is needed to select the survival of
the fittest. One method is elitism and used in the MatLab
syntax. This syntax is for objective function which is to
minimize the fitness. In the selection process, the survivors
from the combination of parent and offspring are
determined. The sets of variables are ranked according to
their fitness value; ascending order or descending order. In
this study, the fitness value is ranked in an ascending order
which is from the minimum value to the maximum value.

New Generation Definition

New generation definition displays the new sets of
variables from the fitness function that have been optimized.

Convergence Test

The last stage for EP method is the convergence test
which determine the stopping criterion and define the
minimum and maximum fitness. If the convergence test
success, the programming will be end. The value of
accuracy was set to 0.0001 as shown in the equation below:

fitness(maximum) — fitness(minimum) =< 0.0001 (7)

Il SIMULATION AND RESULTS

A Before Optimization (Parents)
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Table 1 shows the first 20 population for a 3-steps
function approximation of LDC. The simulation gives the
minimum total error of 4,357,002 MWh and maximum total
error of 3.76 x 10° MWh when the first 20 generating
random numbers are selected as parents. On the other hand,
Table 2 shows the first 20 population for a 6-steps function
approximation of LDC. It is obviously seen that for the first
generation of population, the error is not yet converged. The
first population for 6-segments discretized load gives the
minimum total error of 3,036,718 MWh. However, a more
optimum output result is expected after the optimization is
performed.

Table 1: Total error produced by each population before the optimization
process for 3-step functions of LDC

x1 x2 gL g2 23 y1 y2 y3 total error
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
2337 7299 18542.08 7157.058 19863.89 13313216 14671970 26458705 54443891
156 470 277774.7 113099.8 3547.977 8.05E+08 2.94E+08 19503230 1.12E+09
2384 5895 18176.53 10114.87 10210.41 12196452 6058810 1552738 19807399
35 3368 1238081 10655.06 5446.433 3.74e+09 4485781 14155279 3.76E+09
301 3667 143963 10550.6 5764.683 3.90EH08 4789973 13258770 4.15E+08
3090 5174 14023.58 17040.94 B8171.158 1540230 14109900 6486461 22136592
4187 7433 10349.38 10940.64 21834.11 11715457 3654174 32008804 47378474
2943 3654 14724.04 459483.42 5750.074 2017682 1.1E+08 13299522 1.25E+08
3155 7996 13734.66 7335.948 37433.86 1812463 14151044 75553300 91916806
214 6466 202489.9 5680.314 12725.57 5.75EH08 18972249 6350062 6.01E+08
1477 5557 29338.42 8704.246 9140.961 46296029 10166559 3858166 60320754
3404 8705 12729.98 6699.363 373390.9 4442763 16004779 1.02E+09 1.04E+09
1644 2170 26358.18 67515.83 4459.915 37191352 1.61E+08 16934295 2.15E+08
4421 6348 S9801.594 18429.33 12109.15 13388578 18152893 4613585 35155455
3390 5723 12782.55 15222.17 9636.681 4282155 8813637 26298382 15725673
327 5548 132516.4 6802.016 9115.538 3.62E+08 15705854 3924358 3.81E+08
1964 6733 22063.57 7446.702 14382.19 24071353 13828526 11016761 48916640
1237 3156 35030.6 18506.16 5241.272 63685625 18376618 14733217 96795460
745 4274 57854.27 100747 6540.55 1.33E+08 6175792 11073151 1.51E+08

Table 2: Total error produced by each population before the optimization
process for 6-step functions of LDC

x1 X2 x3 x4 x5 gl g2 g3 g4
258 3316 4301 5061 6491 15245.36 14003.44 12714.32 12060.74
260 706 4341 6759 8205 15128.58 90014.6 3445.283 3790.803
2043 3831 4124 7565 8584 1925.322 23949.95 42742.68 2663.808
2068 3632 5248 6878 8083 1502.046 27380.12 7749.755 5623.412
851 1791 3400 7234 7899 4622.129 45555.86 7783.47 2390.757
213 2479 4249 8212 8500 18466.82 13857.84 7075.482 2312.935

329 1117 1632 2057 7442 11955.72 54343.29 24317.68 21567.44
2989 4008 5018 7059 8073 1315.969 42024.06 12399.61 4451.015
1297 3941 3960 4725 5236 3032.715 16196.11 659137.1 11981.91

487 2189 5289 6265 7687 8076.862 25160.11 4039.872 9391.259

688 2732 4324 6580 7721 5717.198 20950.35 7866.585 4063.015

402 1947 3907 7247 8398 9784.657 27716.84 6389.594 2744.36
1094 3439 5986 6539 8177 3595459 182612 4917.002 16575.34

849 1239 1538 3801 7521 4633.018 109801.3 41884.96 4050.447

550 817 2777 4156 7105 7151.695 160383.9 6389.594 6646.963

839 1028 1522 3621 6884 4579.083 253387.7 25351.43 4366.919

155 1121 2061 6332 6495 25376.98 44329.72 13322.98 2146.14

682 1409 2757 5434 8060 5767.496 58903.04 9250.507 3424.043
3843 4121 4751 6523 6529 1023.532 154037.8 19878.74 5172.778
1511 2114 2953 5333 7078 2603.198 71015.78 14926.82 3851.329

g5 g6 yl y2 y3 ya 5 y6 Error
11348.91 10322.46 34379.02 1461358 160212.6 116731 260423.3 1003614 3036718
11223.33 40879.79 36677.35 2.51E+08 9130000 6285152 285334.7 70067965 3.37E+08
15926.34 118347 3436699 30416438 29577932 7141668 6545726 2.48E+08 3.25E+08
13468 33765.19 3442704 40905904 4850095 4892369 3030300 53754187 L1.11E+08
24404.42 26745.08 2740923 56487322 4356886 7349187 18669384 37657079 1.68E+08
56350.49 83342.96 831006.8 14967092 5554254 7408331 64352263 1.67E+08 2.61E+08
3013.731 17637.41 B848856.1 1.23E+08 11429309 7225092 11519307 16773174 1.72E+08
16004.87 33290.3 3593912 85687050 311005.1 5752990 6658027 52665247 1.55E+08
31759.18 6671.195 3150991 6705189 6.37E+08 124187.1 29186688 8372350 6.84E+08
11412.76 21576.48 1849601 34117114 8544330 2028577 272200.5 25805472 72617294
14223.44 22266.6 2458395 21243654 4775017 6078271 4110573 27387923 66053833
14099.86 61319.69 1408991 41935574 6229854 7080448 3933862 1.17E+08 1.78E+08
9907.779 38994.07 3005804 13020235 7680357 3431095 2060818 65744001 949542310
4362.619 18740.62 2738113 2.93E+08 28733085 6087822 9990397 19302836 3.6EH08
5503.202 14097.32 2088295 4.48E+H08 6229854 4114470 8359363 8655754 4.77EH08
4973.626 12457.58 2752029 7.32E+H08 12447550 5847304 9116657 4895829 7.67EH08
99564.060 10340.5 2613829 92737782 599534.2 7535096 1.26E+08 995423.3 2.31E+08
6180.1 32692.54 2445418 1.37E+08 3372454 6563890 7391399 51294598 2.08E+H08
2704824 10496.41 3669361 4.28E+08 7056951 5234851 3.85E+09 972348.7 4.3E+09
9300.253 13874.21 3261807 1.74E+08 2179316 6239152 2929580 8144160 1.97E+08

B. After Optimization (Converged)

Table 3 shows the minimum total error for 3-step functions
of LDC after optimization process is 3,515,179 MWh. This
proves that after optimization has been performed, the result
gives the most minimum value of error that need to be
minimized by get optimum discretized LDC. The break
points which are g1, g2 and g3 can be determined using the
equation (1), (2) and (3). From the results obtained in Table
4, it shows that a minimum total error of discretized LDC
also achieved for 6-step functions of LDC, where the
minimum total error is 3,036,718 MWh. Results also show
that the 6-step functions of LDC has a lower total error than
the 3-step functions of LDC. This concludes that higher
number of segments of discretized LDC will result in a
lower total of mismatch.

Table 3: Total error produced by each population after the optimization
process for 3-step functions of LDC

x1 x2 gl g2 g3 yl y2 NE] total error
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
3055 5967 14184.24 12195.51 10471.38 1506159 1539392 1311451 4357002
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Table 4: Total error produced by each population after the optimization
process for 6-step functions of LDC

x1 x2 X3 x4 X3 gl g2 g3 g4
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74
258 3316 4301 5061 15245.86 14003.44 12714.32 12060.74

Error
3036718
3036718
3036718
3036718
3036718
3036718
3036718
3036718
3036718
3036718
3036718
3036718
3036718
3036718
3036718
3036718
3036718
3036718
3036718
3036718

g5 26 y1 y2 y3 ya y5 ¥6

11348.91 10322.46 34379.02 1461358 160212.6 116731 260423.3 1003614
11348.91 10322.46 34379.02 1461358 160212.6 116731 260423.3 1003614
11348.91 10322.46 34379.02 1461358 160212.6 116731 260423.3 1003614
11348.91 10322.46 34379.02 1461358 160212.6 116731 260423.3 1003614
11348.91 10322.46 34379.02 1461358 160212.6 116731 260423.3 1003614
11348.91 10322.46 34379.02 1461358 160212.6 116731 260423.3 1003614
11348.91 10322.46 34379.02 1461358 160212.6 116731 260423.3 1003614
11348.91 10322.46 34379.02 1461358 160212.6 116731 260423.3 1003614
11348.91 10322.46 34379.02 1461358 160212.6 116731 260423.3 1003614
11348.91 1032246 34379.02 1461358 160212.6 116731 260423.3 1003614
11348.91 1032246 34379.02 1461358 1602126 116731 260423.3 1003614
11348.91 1032246 34379.02 1461358 1602126 116731 260423.3 1003614
11348.91 1032246 34379.02 1461358 1602126 116731 260423.3 1003614
11348.91 1032246 34379.02 1461358 1602126 116731 260423.3 1003614
11348.91 1032246 34379.02 1461358 1602126 116731 260423.3 1003614
11348.91 1032246 34379.02 1461358 1602126 116731 260423.3 1003614
11348.91 1032246 34379.02 1461358 1602126 116731 260423.3 1003614
11348.91 1032246 34379.02 1461358 1602126 116731 260423.3 1003614
11348.91 1032246 34379.02 1461358 1602126 116731 260423.3 1003614
11348.91 1032246 34379.02 1461358 1602126 116731 260423.3 1003614

C. Optimum Break Points for 3-Step and 6-Step Functions
of LDC

The optimum break points for 3-steps and 6-step functions
of Malaysia’s LDC in year 2012 are shown in Figure 3 and
Figure 4 respectively. For 3-steps function of LDC, the
break points are x;= 3,055 h and x,= 5,967 h with respective
load of y;= 14,184 MW, y, = 12,195 MW and y; = 10,471
MW.

LDC Malaysia 2012
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Figure 3: The load duration curve graph for 3-step functions of LDC

On the other hand, for 6-steps function of LDC, the break
points are x; = 258 h, x, = 3,316 h, x; = 4,301 h, x4, = 5,061
h, and x5 = 6,491 h with respective load of y; = 15,245 MW,
Yo = 14,003 MW, y; = 12,714 MW, y, = 12,060 MW, ys =
11,348 MW and yg = 10,322 MW as shown in Figure 4.
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Figure 4: The load duration curve graph for 7-step functions of LDC

D. Comparison Between Evolutionary Programming (EP)
and Dynamic Programming (DP)

In this case, the results of discretized LDC using EP is
compared with Dynamic Programming (DP) technique as in
[3]. Table 7 shows the differences between DP and EP
techniques in term of elapsed time, optimum break points
and total error. The techniques have been tested using
Malaysia’s LDC in year 2012.

Results show that, for the 3-step functions of LDC, the
optimum break points are comparable. However, EP

8335
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provides a lower total error compare to DP. EP also
provides a much shorter elapsed time i.e. 29.08s than DP i.e.
766.11 s. On the other hand, for 6-step functions of LDC,
DP gives a lower total error compare to EP. However, in
term of the elapsed time, EP still shows a much shorter time
i.e. 29.07s than DP i.e. 3,463.11s.

Table 5: Comparison between EP and DP

3-segments DP EP
Elapsed 766.118965 29.084227
time (s)
X1 4,398 3,055
X2 8,201 5,967
Total 5,197,020 4,357,002
Error
(MWh)
Elapsed = 3463.110517 29.071741
time (s)
6-segments X1 1,966 258
X2 3,766 3,316
X3 5,271 4,301
X4 7,193 5,061
X5 8,701 6,491
Total 2,566,869 3,036,718
Error
(MWh)

V. CONCLUSION

This study proposes Evolutionary Programming (EP) to
determine optimum break points of discretized LDC at
minimum error. The EP is developed using MatLab
programming software. The proposed EP-based optimal
step functions of LDC has been tested on Malaysia’s LDC
in year 2012 for three and six segments of discretized LDC.
Results show that EP technique is able to provide optimum
break points of discretized LDC at minimum error. Results
also show that the 6-step functions of LDC has a lower total
error than the 3-step functions of LDC. The EP technique
proposed in this paper is also compared with DP technique.
Results show that EP provides a much shorter elapsed time
than DP and have a lower total error for 3-step function of
LDC.

For future work, a Graphical User Interface (GUI) is
recommended to ease user to determine optimal discretized
LDC at various segments. With this GUI, user can load
their own annual hourly load data and choose the number of
segments that they want their LDC to be discretized.
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