DIGITAL BENCHTOP DC POWER SUPPLY

A project report presented in partial fulfillment of the requirements for the award of DIPLOMA IN ELECTRICAL ENGINEERING (POWER) of MARA Institute of Technology.

By:

MAZET SHAHAR BIN MOHAMED

DEPARTMENT OF ELECTRICAL ENGINEERING (POWER)

MARA INSTITUTE OF TECHNOLOGY

SHAH ALAM 40450 SELANGOR

JANUARY 1989

		TABLE OF CONTENTS			
		Fage			
Ackn	nowled	gements			
Tabl	e of	contents			
CHAF	TERS				
1.0	INTR	ODUCTION	1		
	1.1	Objective and odtlines	2		
2.0		CIPLE OF OPERATION	4		
3.0	THEORY OF COMPONENTS				
	3.1	Regulated Power Supply	12		
		3.1.1 Stabilization	14		
	3.2	Monolithic Regulators	15		
	3.3	Polarity Splitter	20		
	3.4	Rectifiers	22		
	* .	3.4.1 Bridge Rectifiers	22		
	3.5	Display Section	; •		
		3.5.1 Analog To Digital Converters	- 25		
		3.5.1.1 Counting analog to digital converter (ADC)	26		
		3.5.1.2 Successive-approximation ADC	29		
		3.5.1.3 Parallel-comparator ADC	30		
		3.5.1.4 Dual-slope ADC	34		

			24	
		3.5.1 Decoder/Demultiplexer	38	
		3.5.2.1 Binary-coded-decimal (BCD) system	. 39	
		3.5.2.2 BCD-to-decimal system	40	
		3.5.3 Seven-segment LED visible display	44	
4.0	CIRCUIT			
	4.1	Schematic Diagram		
		4.1.1 Main Power Supply	57	
		4.1.2 Folarity Splitter	58	
	4.2	Circuit Design	60	
5.0	CONSTRUCTION TECHNIQUE			
	5.1	In :moduction	63	
		PRINTED CIRCUIT BOARD (PCB) MAKING TECHNIQUE		
		5.2.1 Drawing	64	
		5.2.2 Etching	66	
6.0	TESTING AND RESULTS			
7.0	TROUBLESHOOTING			
8.0	CONCLUSION			
9.0	COMMENTS			
REFERENCES				
APPE	NDICE	odersker. S oft	84	
	DATA	SHEETS		

1.1 OBJECTIVES AND OUTLINES

A low-current power supply is a must for testing and experimenting electronics and other related areas.

The main objective of this project is to facilitate the normal procedure of using available do power supplies. In normal applications, while reading do voltage, it is necessary to read the current consumption too. Thereby, in order to get the reading, the circuit in testing has to be broken and an ammeter be placed between the power supply and the load circuit and only then, the current output can be obtained.

In this, it is not necessary to do as the above. Instead, by just pushing the pushbutton switch marked "VOLTS / mA" from dc volts to dc mA or vice-versa, the readings of the voltage and current can be obtained, without breaking the circuit.

Although there are other power supplies that offer this kind of extra feature, they are of analog type, i.e using needle meter. But the metod used in this project to read the the meter is through a digital display., which is quite reliable and accurate 10.1 V or 11mA. It would be a great advantage for hobbyist, in this case, because it 's like having a second multimeter, for those who has only one multimeter. The power supply is also inexpensive, compared to readily available

commercially, since all of the components used in the circuit are commonly available in the electronics market and cheaply sold. This project can also be called a "junkbox" power supply to some people, because some of them, which are electronic hobbyist, tend to have stocks of electronics components and spare parts of all odds lying around in boxes at home. Thus, since they have all of the components with them, they have called their self-made projects "junkbox" projects.