LAPURAN PROJEK TAHUN AKHIR KURSUS DIPLOMA KEJURUTERAAN JENTERA KAJIAN KEJURUTERAAN, ITM, SHAH ALAM-

DESIGN AND FABRICATION OF A HYDRAULIC BENCH PRESS

BY:

ALAUDDIN BIN MUSTAFAR
(83188640)
ZAINI BIN MUSA
(82203513)
HAMIDOM BIN NGAH
(83274527)

ITM, SHAH ALAM, MAY, 1985

Preface	i		
Acknowle	iii		
Chapter	1 In	troduction	1
	1.1	Press Work	1
	1.2	Types of Presses	2
	1.3	Types of Press Clasification	3
	1.4	Frame	5
	1.5	Advantages of Column Frame to	
		Side Frame	6
Chapter	2	Fundamentals of Hydraulic	7
	2.1	What is Hydraulic ?	7
	2.2	Why are Hydraulic System Used ?	8
	2.3	Theory of Hydraulic	1.1
	2.31	Fluidity	11
	2.32	Composition of Mater	11
	2.33	Pascall's Laws	12
	2.34	System Pressure	13
	2.4	The Relationship of Force and	
		Pressure in a Hydraulic System	<u>13</u>
	2.5	Work and Power	14
	2.6	Horsepower_in_a_Hydraulic_System	15
	2.7	Horsepower and Torque	16
	2.8	Speed of an Actuater	17
Chapter	3	Design of Press Machine	18
	3.1	Design Principle	18
	3.2	Basis of the Design	19
	3.21	Description of the Machine	19
	3.22	Different Type of Design	20
	3.3	Synthesis	20
	3.4	Safety Factor	21

	3.5	Design Eva luation and Decision	22
	3.6	Optimization	23
	3.7	Implementation	23
	3.8	Calaculation for Frame	
		Dimensions	24
	3.81	To Find the Size of Column	24
Chapter 4		Die Design	<i>3</i> 3
	4.1	Shear Action in Die Cutting	
		Operations	33
	4.2	Clearances	_34
	4.3	Cutting Force	39
	4.4	Methods of Reducing Cutting	
		Forces	39
	4.5	Scrap - strip Layout for Blaking	41
	4.6	Die Set Selection	41
	4.7	Stripper Design	42
	4.8	Spring	42
•		Designing a Hydraulic System	44
	5.1	Circuit Components	46
	5.2	Actuating Cylinder	53
	5.3	Standard Double - acting	53
	5.4	Operating Principle	54
	5.5	Cylinder Construction	54
	5.6	Cylinder Options	55
	5.7	Cylinder Mountings	55
	5.8	Cylinder Rating,	55
	5.9	Selecting the Hydraulic	
		Components	57
Chapte	r 6	Photograph	64
Chapte	r 7	Conclusion & Discussion	
		Discussion	71
		Conclusion	74
Chapte	r 8	References & Appendices	

PREFACE

The area of control engineering that deals with the transmission and control of loads and motion by means of fluid is called fluid power. Fluid power is rightly a part of Mechanical Engineering, since it is truely a machine designer's tool. The opportunities offered by fluid power in education and reasearch have found to be complementary to the other fields.

One of the main application of the fluid powers is as the means of powering machine. Nowadays the application of hydraulic is largely used in industries. This is because the fluid power can vary from a delicate touch of a few ounches to a gigantic force of 36000 tons or more.

To demonstrate how this area can work together, we decided to use a hydraulic system to power a press machine. The press machine itself contains of two parts that is the press itself and the die.

All these parts were design separately but dependant to each other. Therefor, a very careful study is needed before designing the parts. All the design were based on books, suppliers and the Department of Mechanical Engineering of M.I.T. Although this would not give a complete or balance picture of the state of the art and science of fluid power control and machine designing, it does reflect more or less accurately the collective experience and accomplishments of the student and Mechanical Engineering staffs.

Apart from the press machine and it's hydraulic power means, this project extends to design and

ACKNOWLEDGEMENTS_

One of the more pleasent part of completing a project is the opportunity to thank those who have contribute to it. Unfortunately, the expression of thanks - no matter how extensive - is always incomplete and inadequate. These acknowledgements are no exception.

It—is—our—pleasure—to_express_our_gratitude_to many who generously contributed their time from -their-already-busy-schedules—in helping_to_complete our_project.

The continuus interest of Mr. Mohd Shafiul Karim, as the project supervisor, inspired us to forge ahead during difficult periods.

We wish to extend our appreciation and gratitude to all Staff of the Mechanical workshop who have assisted and supplied us with various ideas for the completion of the project. We feel, however, that in addition to the person mentioned above, we should at least acknowledge our special indebtedness to the Ketua Kursus and Ketua Kajian Mechanical for the financial and adminstrative support.

Once again, we must appologise for any errors which may have escaped our scrunity.

We will be glad to recieve any correction or constructive critisms.

ALAUDDIN M.

ZAINT_M.

HANIDOM N.