'BATIK DISCHARGE PRINTING ON LYOCELL, LINEN (FLAX), POLYESTER & POLYESTER/COTTON BLEND FABRICS'

INSTITUT PENYELIDIKAN, PEMBANGUNAN DAN PENGKOMERSILAN (IRDC) UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR DARUL EHSAN

BY: MOHD ROZI AHMAD WAN YUNUS WAN AHMAD SITI MARSINAH TUMIN

JULY 2005

ACKNOWLEDGEMENTS

The authors would like to express their sincere gratitude and appreciation to the Institute of Research, Development and Commercialisation (IRDC) of UiTM for project's funding.

Our sincere thanks go to En. Muhammad Ismail Ab. Kadir, the research assistant, for his invaluable effort and energy in completing this project. Without him, the project might take a longer time to complete.

We are also indebted to the members of the Textile and Apparel Technology Special Interest Group of the Faculty of Applied Sciences for their advices, strong support and commitment towards the completion of the project.

ABSTRACT

Malaysian batik has traditionally used wax as physical resist to create designs on cotton, silk and rayon fabrics. An alternative printing style called discharge printing is explored in this study as it is able to produce white and colored sharply outlined patterns which are characterized by close-fitting, fine details and small motifs on contrasting color (usually darker) ground shade that would otherwise be virtually impossible to obtain by conventional printing style. The printing was done on several fabric materials: linen (flax), lyocell, polyester and polyester/cotton blend fabrics. The luxurious, elegant and comfortable properties of lyocell and linen could replace traditional batik fabrics as exclusive batik products. Polyester and polyester/cotton blend fabrics should be considered as alternative fabrics for batik application because of their competitiveness in price, durability and color fastness in comparison with traditional batik fabrics of cotton, silk and rayon. The printing techniques carried out were screen printing and canting. The fixation methods applied on the printed fabrics were dry heat and ironing. The result of different printing techniques and different methods of fixation were compared.

TABLE OF CONTENTS

	<u>PAGE</u>
Ι ΕΤΤΈΡ ΩΕ ΔΡΡΩΙΝΤΜΕΝΤ	:
	1
A CUNIONA EDGEMENT	11
ACKINO W LEDGEMENT	111
	1V
TABLE OF CONTENTS	v
LIST OF TABLES	Viii
LIST OF FIGURES	ix
CHAPTER 1- INTRODUCTION	
1.1 INTRODUCTION	1
1.2 PROBLEM STATEMENT	2
1.3 OBJECTIVES	3
1.4 SCOPE AND LIMITATION	3
CHAPTER 2 – LITERATURE REVIEW	
2.1 THE ORIGINS OF BATIK	4
2.2 A BRIEF HISTORY OF BATIK PRINTING	4
2.3 BATIK IN MALAYSIA	5
2.4 A REVIEW OF BATIK PRINTING TECHNIQUES	7
2.4.1 TRADITIONAL BATIK PRINTING TECHNIQUES	7
2.4.2 DEVELOPMENT IN BATIK PRINTING TECHNIQUES	5 13
2.5 'NEW' TEXTILE FIBERS FOR BATIK MATERIALS	15
2.5.1 LYOCELL	16
2.5.2 LINEN (FLAX)	17
2.5.3 POLYESTER	18
2.5.4 POLYESTER/COTTON BLEND FABRICS	19
2.6 A REVIEW OF DISCHARGE PRINTING	20
2.6.1 A BRIEF HISTORY OF DISCHARGE PRINTING	20

2.6.2 DISCHARGE PRINT PASTE	21
2.6.2.1 DISCHARGING (REDUCING) AGENT	
SELECTION	21
2.6.2.2 THICKENING AGENT	22
2.6.2.3 DYE SELECTION	22
2.6.2.4 AUXILIARIES	24
2.7 REACTIVE DYES	25
2.8 DISPERSE DYES	26
CHAPTER 3 MATERIALS AND METHODS	
3.1 MATERIALS	28
3.1.1 WHITE FABRICS	28
3.1.2 DYES AND AUXILIARIES	20
3.2 METHODS	31
3.2.1 DYEING LYOCELL AND LINEN (FLAX) FABRICS	31
3.2.2 DYEING POLYESTER FABRIC	31
3.2.3 DYEING POLYESTER/COTTON BLEND FABRIC	32
3.2.4 PRINTING METHODS	32
3.2.4.1 DISCHARGE PRINTING	32
A. RECIPE OF DISCHARGE PRINTING ON	
LYOCELL AND LINEN	35
B. RECIPE OF DISCHARGE PRINTING ON	
POLYESTER	35
C. RECIPE OF DISCHARGE PRINTING ON	
POLYESTER/COTTON BLEND FABRIC	36
3.2.5 FIXATION METHODS	37
3.2.6 WASHING	37
3.2.7 TESTING OF COLOR FASTNESS	37
3.2.7.1 WASHING FASTNESS TEST	38
3.2.7.2 PERSPIRATION TEST	38
3.2.7.3 RUBBING (CROCKING) FASTNESS TEST	39