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Abstract—This paper presents an advanced 

application of particle swarm optimization, PSO to 

find state feedback controller gains for stabilizing 

controller in a linear inverted pendulum. This plant 

is used as an application example of the proposed 

method. In conventional method of state feedback 

control design such as pole placement and linear 

quadratic regulator method, controller designers 

often face troublesome exercise of tuning several 

parameters. Particularly, one has to face trial-and-

error approach to select suitable Q and R matrices 

to design a state feedback control using linear 

quadratic regulator method. To overcome this 

problem, an intelligent approach employing PSO-

based constrained optimization is proposed. The 

objective of the optimization is to minimize error 

function, while closed loop poles region is 

incorporated as an optimization constraint whose 

parameter is selected based on the desired control 

performance. In this study, Clerc’s PSO is adopted 

together with dynamic objective constraint handling 

where efficient optimization run is shown in the 

simulation results.  

 
Index Terms—PSO, optimization, state feedback 

controller, inverted pendulum. 

I. INTRODUCTION 

winging up an inverted pendulum is a classic 

and challenging control problem in the field  
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of nonlinear control theory. It is also useful to 

demonstrate concepts such as stabilization of an 

unstable system. A cart-driven inverted pendulum 

has a structure where the pendulum is hinged to 

the cart via a pivot and only the cart is actuated. 

The motion of the pendulum has to be controlled 

by moving the cart back and forth within a 

limited travel of the cart [1].  

There have been a lot of studies in this subject 

[2-7]. Basically, inverted pendulum control is 

composed of the swing-up control of the 

pendulum and the stabilizing (tracking) control of 

the whole system that consists of angular control 

of the pendulum at upright position and 

position/tracking control of the cart on the rail. 

First, swing-up control is to raise the pendulum 

from the downwards position to the upright 

position. This is achieved when the motor is given 

voltage in the appropriate direction and 

magnitude to drive the cart back and forth along 

the limited rail length repeatedly until the 

pendulum is close to the upright position. The 

swing-up method used is commonly energy based 

method [1,8]. Thereafter, stabilizing control is to 

balance the pendulum in the upright position. 

This control algorithm has also to maintain the 

pendulum upright while the cart tracks the 

position reference trajectory.  

This paper will only focus on the stabilizing 

controller. State feedback controller with integral 

action is used for stabilizing controller. The 

controller is designed based on the linearized 

state space model of the system.  Although the 

problem of feedback control design is 

conventionally handled by pole placement method 

or LQR method via Riccati equation [9], they still 

possess trial and error approach of parameter 

adjustment. Particularly, choosing elements of Q 
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and R matrices in the feedback control design 

using LQR method has to be done by trial.  

Therefore, to resolve this difficulty, this paper 

proposes a novel intelligent-based tuning of state 

feedback gains employing particle swarm 

optimization (PSO) with regional closed loop pole 

as a constraint. Simulation study on cart-driven 

inverted pendulum tracking control is carried out 

to evaluate the effectiveness of the proposed 

method.  

PSO is a swarm intelligence technique and is 

one of the latest population-based optimization 

algorithms. PSO has attracted a lot of attention in 

recent years because of the following reasons 

[10,11]. First, it requires only a few lines of 

computer code to realize the PSO algorithm. 

Second, its search technique using not the 

gradient information but the values of the 

objective function makes it an easy-to-use 

algorithm. Third, it is computationally 

inexpensive, since its memory and CPU speed 

requirements are very low. Fourth, it does not 

require a strong assumption made in conventional 

deterministic methods such as linearity, 

differentiability, convexity, separability or non-

existence of constraints in order to solve the 

problem efficiently. Finally, its solution does 

hardly depend on initial states of particles, which 

could be a great advantage in engineering design 

problems based on optimization approaches. PSO 

was first introduced in 1995 by Kennedy and 

Eberhart [12-16]. It was developed through 

simulation of a simplified swarm social behavior, 

and has been found to be robust in solving 

continuous nonlinear optimization problem. 

Compared with other optimization algorithm such 

as GA (genetic algorithm), PSO is more efficient 

and economic for solving min-max optimization 

problem [17].   

The remainder of this paper is as follows. 

Section II presents the system description and 

modeling. Section III discusses the controller 

strategy for the swing-up and tracking system of 

self-erecting cart-driven inverted pendulum. 

Section IV presents the proposed method where 

PSO is adopted for state feedback gains 

optimization/tuning.   Section V shows the 

simulation results and Section VI is conclusions.  

II. SYSTEM MODEL  

The cart-driven inverted pendulum model is 

derived based on physical laws.  For simulation 

purpose, the system model and parameters value 

are taken from Quanser’s Linear Motion Servo 

Module [7]. The schematic diagram is shown in 

Fig.1. The parameters value and the description 

are presented in Table I.   

 

 

Fig. 1. Cart-driven inverted pendulum schematic 

 

Applying Newton’s second law of motion to the 

cart system, the equation of motion can be 

represented as follows: 

aeq FxBFxM −−= &&&                (1) 

where F is cart driving force produced by the 

motor and Fa is inertia force due to the armature 

motor rotation. The driving force acting on the 

cart through the motor pinion can be expressed 

as: 

m

mgg

r
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F

η
=                  (2) 

where Tm is torque generated by the motor. Using 

Khirchoff ‘s voltage law, the following equation 

is obtained (by disregarding the motor inductance 

since Lm<<Rm): 
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TABLE I 

List of parameters 

Symbol  Description Value/Unit 

R Motor armature resistance 2.6 Ω 

L Motor armature inductance 0.18 mH 

Kt Motor torque constant 0.00767 Nm/A 

ηm Motor efficiency 100% 

Km Motor EMF constant 0.00767 Ns/rad 

J Rotor moment inertia 3.9x10
-7 

kgm
2
 

Kg Gearbox ratio 3.71 

ηg Gearbox efficiency  100% 

rm Motor pinion radius 6.35x10
-3 

m 

rp Position pinion radius  1.48x10
-2 

m 

Beq Equivalent viscous damping coefficient at 

motor 

5.4 Nms/rad 

Bp Viscous damping coefficient at pendulum 

pivot 

0.0024Nms/rad 

l Pendulum length from pivot to centre of 

mass  

0.3302 m 

I Pendulum moment of inertia  7.88x10
-3 

kgm
2
 

Mp Pendulum mass 0.23 kg 

M Cart mass 0.94 kg 

Vm Motor nominal input voltage 5 V 

 

The torque generated by the DC motor is 

proportional to the armature current as: 

mtmm
iKT η=               (4) 

Substituting (4) and (3) into (2) leads to: 

m

mmtgmg
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xKVKK
F
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The linear velocity of the cart and motor 

angular velocity can be related by: 

m

g

m
r
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=ω                   (6) 

Therefore, (5) can be rearranged to: 

2
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As seen at the motor pinion, the armature 

inertia force due to the motor rotation can be 

expressed as: 

m

agg

a
r
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η
=               (8) 

Applying Newton’s 2nd law of motion to the 

motor shaft: 

am TJ =θ&&                 (9) 

where θm is motor shaft rotation angle. Moreover, 

the mechanical configuration of the cart’s pinion 

system gives the following equation: 

m

g

m
r

xK
=θ                    (10) 

Using (10) and (9) and substituting into (8), 

gives: 
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Finally, substituting (11) and (7) into (1), 

applying Laplace transform and   rearranging, 

yields the open loop transfer function for the cart 

system: 
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where: 

tgmgm KKra ηη=1
 

 JKRRMrb ggm

22

1 η+=  

22

2 meqmtmgg RrBKKKb += ηη  

If the parameters related to the motor in G are 

unknown, then a1, b1 and b2 can be identified 

experimentally. Thus, this case is considered as a 

practical approach of modeling. However, this is 

beyond the discussion in this paper.  

Furthermore, the nonlinear model of the 

inverted pendulum motion can be derived using 

Lagrange’s equation. For brevity, the nonlinear 

equation of motions can be obtained as follows: 

FlMlMxBxMM ppeqp =+−++ θθθθ sincos)( 2&&&&&& (13) 

0sin)(cos 2 =−+++− θθθθ glMBlMIxlM pppp
&&&&&    (14) 

The nonlinear model can be linearized which is 

valid near the equilibrium point (upright 

pendulum) so that sin(θ)≅ θ, cos(θ) ≅1 and also 

neglecting higher order term. The linearized 

model is written in state space in order to allow 

the design of state feedback controller for upright 

pendulum stabilization. 
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BuAzz +=&                 

 (15) 

Czy =  

where: Txxz ][ θθ &&= , Vu = and  Txy ][ θ= . 
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III. CONTROL STRATEGY  

The self-erecting inverted pendulum control 

strategy has two mains phases: the swing-up 

phase and the stabilizing (and tracking) phase. In 

swing-up phase, the swing-up controller sways 

the pendulum using a sinusoidal reference input 

while keeping the cart within the limited travel 

distance on the rail. In the second phase, where 

this paper is focused on, when the pendulum is 

close to the vertical position (about |θ|<25o), a 

linear state feedback controller takes over the 

control to stabilize the pendulum via switching 

algorithm. This controller should also be able to 

track the input reference trajectory of the cart 

while maintaining the pendulum upright.  The 

control scheme of the self-erecting inverted 

pendulum is shown in Fig.2.  

 

  

Fig. 2. Control scheme of self-erecting inverted pendulum 

 

 

A.  Swing-up Controller 

This controller aims at swinging up the 

pendulum from the rest (θ=180o=-180o) while 

keeping the cart travels within the limited 

horizontal distance. This can be achieved by 

giving sinusoidal input reference to the cart as 

suggested by [1]. Here, to ensure the bounded 

travel of the cart, close loop servo control is 

designed based on the transfer function G(s). By 

constructing a sinusoidal reference input, the 

pendulum will be swung up to reach nearly 

vertical posture in order to allow the stabilization 

controller to take over. The reference input (xr)  

has the form: 

 

)sin( πω −= tKx xr
                (16) 

 

where Kx is determined to limit the horizontal 

travel of the cart and ω is selected considering the 

natural frequency of the swing angle.  

The close loop servo control used here is 

proportional velocity (PV) controller which has 

control law as: 

 

xKxxKV vrp
&−−= )(          

 (17) 

 

Then, the close loop transfer function of the 

cart servo can be expressed as:  

)()(1

)(

)(

)(

sGsKsGK

sGK

sX

sX

vp

p

r ++
=        (18) 

 

This leads to a second order system as follows: 
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The desired performance is ζ=0.7 and ω=20rad/s. 

Comparing characteristic equation in (19) with 

the standard second order form: 

 
22 2 ωζω ++ ss               (20) 

 

the PV controller gains are obtained as: 

Kp=250 and Kv=9.86. 

 

B.  Switching Algorithm 

A transition algorithm is designed to switch 

from swing-up controller to stabilizing controller. 

This is performed by smooth conditional 

switching that can be expressed as follows: 

If |θ|>25o, only swing-up control is active. 

If |θ|<20o, only stabilizing control is active. 

If 20o≤|θ|≤25o, swing-up and stabilizing control 

signal are averaged/weighted. 

The last condition is made as transition region to 

avoid what known as hard switching.  

 

C.  Stabilizing Controller 

This section is the focus of this paper. The 

stabilizing controller is designed based on 

linearized state space model in (15). It is a state 

feedback control with integral action for tracking 

system. It is assumed that the system given in (15) 

is completely state controllable and all state 

variables are available for feedback. One can use 

full state feedback control with integral gain as 

diagram shown in Fig. 3.  

 

Fig. 3. State feedback control with integral gain for tracking 

system 

 

Controller gains k:=(k1,k2,k3, k4, and ki)  can be 

determined by common method such as pole 

placement or LQR method. However, the issue in 

pole placement method becomes a matter of trial 

and error to meet the desired response, same as 

choosing the appropriate element of Q and R 

matrices in LQR method. The problem becomes 

more intractable when the system has multiple 

outputs.  

Therefore, the objective in this work is to 

search for a feedback controller gains to stabilize 

the inverted pendulum upright and after that it 

has also to track the input reference of the cart 

position while maintaining the pendulum upright. 

PSO-based constrained optimization is adopted in 

the controller gain tuning with allowable closed 

loop pole region as a constraint.   

IV. CONTROLLER OPTIMIZATION BY PSO  

A. Overview of PSO 

PSO is a population-based stochastic search 

algorithm. The basic PSO is developed from 

research on swarm such as fish schooling and 

bird flocking. PSO is popular mainly due to its 

simplicity in the concept and computationally 

efficient. Compared with other optimization 

algorithms such as GA, PSO is more efficient for 

solving min-max optimization problem [15].  Its 

advantages are highlighted in [16]. First, it 

requires only a few lines of computer code to 

realize the PSO algorithm. Second, its search 

technique using not the gradient information but 

the values of the objective function makes it an 

easy-to-use algorithm. Third, it is computationally 

inexpensive, since its memory and CPU speed 

requirements are very low. Fourth, it does not 

require a strong assumption made in conventional 

deterministic methods such as linearity, 

differentiability, convexity, separability or non-

existence of constraints in order to solve the 

problem efficiently. Finally, its solution does 

hardly depend on initial states of particles, which 

could be a great advantage in engineering design 

problems based on optimization approaches. 

After it was firstly introduced in 1995 by 

Kennedy and Eberhart, modified versions of PSO 

have been introduced to improve the performance 

of the original PSO. One of them introduces a 

new parameter called inertia weight [17]. This is 

a common PSO where inertia weight is linearly 

decreasing during iteration. Another common 

version of PSO in the early development of PSO 

was proposed by Clerc [18] that is called PSO 

with constriction factor. These two famous 

versions of PSO can be considered as standard 

version of PSO. Later, PSO has attracted many 
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researchers to improve its performance as can be 

seen in [19-22].  

In PSO, instead of using genetic operators, 

individuals called as particles are “evolved” by 

cooperation and competition among themselves 

through generations. A particle represents a 

potential solution to a problem. Each particle 

adjusts its flying according to its own flying 

experience and its companion flying experience. 

Each particle is treated as a point in a D-

dimensional space. The ith  particle is represented 

as  Xi=(xi1,xi2,…,xiD). The best previous position 

(giving the minimum fitness value in the case of 

minimization) of any particle is recorded   and 

represented as Pi=(pi1,pi2,…,piD), this is called 

pbest.  The index of the best particle among all 

particles in the population is represented by the 

symbol g, called as gbest. The velocity for the 

particle i is represented as Vi=(vi1,vi2,…,viD). The 

particles are updated according to the following 

equations: 

 
)().(.)().(..

2211

1 j

gd

j

gd

j

id

j

id

j

id

jj

id
xprandcxprandcvwv −+−+=+
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11 ++ += j

id

j

id

j

id vxx
                         (22) 

 

where c1 and c2 are two positive constants which 

contribute the weights for “cognition” part 

(second term of (21)) and “social” part  (third 

term of (22)) [23], randi(.) are uniformly 

distributed random numbers between 0 and 1, and 

j represents iteration. Equation (21) is used to 

calculate particle’s new velocity according to its 

previous velocity and the distances of its current 

position from its own best experience (position) 

and the group’s best experience. Then the particle 

flies toward a new position according to (22). The 

performance of each particle is measured 

according to a pre-defined fitness function 

(objective function), which is related to the 

problem to be solved. Inertia weight, w is brought 

into the equation to balance between the global 

search and local search capability [13]. A 

standard PSO where w is linearly decreasing 

value from 0.9 to 0.4 during iteration is common 

in many studies using PSO.  

Another common version is PSO with 

constriction method [14] that was proposed by 

Clerc to improve the convergence of the original 

PSO (21-22). Afterward, it is revealed this Clerc’s 

PSO is equivalent to the original PSO with inertia 

weight where the optimal parameters are selected 

as:  c1=c2=1.494 and w=0.729 [15]. Thus, we will 

use this version of PSO throughout this work.  

Furthermore, an important feature in PSO is 

velocity clamping. The idea of velocity clamping 

is to prevent swarm (particle) explosion that was 

revealed in the early development of PSO. It is 

therefore necessary to keep the velocity of particle 

within the range [-Vmax, Vmax] before update the 

particle position, see Table II. Eberhart and Shi 

[16] concluded that a better approach to use as a 

prudent rule of thumb is to limit Vmax to ub (upper 

bound of particle). 

 
TABLE II 

Velocity clamping mechanism 

If   
maxVv j

id >
 

  
)(.max

j

id

j

id vsignVv =
 

Else 

  
j

id

j

id vv =
 

End  

 

In addition to velocity clamping, we also apply 

random mode bound handling mechanism that is 

necessary to confine the solution within a certain 

bound. If a particle exceeds the lower or upper 

limit of the d-th dimension, a random value, 

uniformly distributed between [lb, ub], is assigned 

to the d-th component of the particle’s position 

vector (see Table III). 

 
TABLE III.  

Bound handling mechanism 

If  b

j

id up >
 

 
().randup b

j

id =
 

Elseif b

j

id lp <
 

 
().randlp b

j

id =
 

Else 

j

id

j

id pp =
 

End  

B. Constrained optimization 

 

The objective of the optimization is to minimize 

an error performance (J) defined as:  

 

dtxxJ r

22 )()( θ∫ +−=        (23) 

Based on our approach, the searching procedure 

of the robust controller gains using constrained 

optimization can be formulated as follows (Table 

IV).  
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Fig. 4. A wedge region in complex plane for closed loop poles 

placement 

 
TABLE IV.  

Constrained optimization 

Minimize:      

 1)( −−= JXf  

Subject to constraint: 
ψλ ∈)(Xn  for n=1,2,… 

and boundary constraint: 
],[ bb ulX ∈

 

 

where X=K=(k1,k2,k3,k4,ki) is the vector solutions 

such that .1+⊆∈ n
RSX S  is the search space, and 

SF ⊆  is the feasible region or the region of S  

for which the constraint is satisfied. The 

constraint here is the closed loop poles region; in 

the feasible region, the controller gains are found 

such that the closed loop poles (λ) lie within a 

wedge region (ψ ) of a complex plane as given in 

Fig. 4. The wedge region can be specified by two 

parameters θ and ρ which can be related to 

desired transient response characteristics i.e.: 

damping ratio (ζ) and settling time. 

 

C. Constraint handling 

An efficient and adequate constraint-handling 

technique is a key element in the design of 

stochastic algorithms to solve complex 

optimization problems. Although the use of 

penalty functions is the most common technique 

for constraint-handling, there are a lot of different 

approaches for dealing with constraints [17].  

Instead of using penalty approach like in [18] 

where the optimizer seemed to be inefficient (high 

iterations), we adopt a dynamic-objective 

constraint-handling method (DOCHM) [19] in 

order to improve the efficiency. Through defining 

distance function  F(X), DOHCM converts the 

original problem into bi-objective optimization 

problem min(F(X),f(X)), where F(X) is treated as 

the first objective function and f(x) is the second 

(main) one.  

The auxiliary distance function F(X) will be 

merely used to determine whether or not a 

particle (candidate of solution) is within the 

feasible region and how close a particle is to the 

feasible region.  If a particle lies outside the 

feasible region (at least an eigenvalue lies outside 

the wedge region), the particle will take F(X) as 

its optimization objective. Otherwise, the particle 

will instead optimize the real objective function 

f(X). During the optimization process if a particle 

leaves the feasible region, it will once again 

optimize F(X). Therefore, the optimizer has the 

ability to dynamically drive the particles into the 

feasible region. 

The procedure of the DOCHM applied to the 

eigenvalue assignment in the wedge region is 

illustrated in the following pseudo-code (Table 

V). Referring to Fig. 5, let dn is an outer distance 

of an eigenvalue (λn) to the wedge region. It is 

noted that if an eigenvalue lies within the wedge 

region, dn=0. F(X) is defined by: 

 

∑
+

=

=
1

1

)))((,0max()(
n

i

nn XdXF λ
                   (24) 

 

 
 

Fig.5. An eigenvalue distance to the wedge region in complex 
plane 

 

D. Stopping criterion 

When using optimization algorithms the goal is 

usually clear that is to find the global optimum 

solution. However, in general it is not clear when 

this goal is achieved, especially if real-world 

problems are optimized for which no knowledge  

about the global optimum is available. Therefore, 

it is not easy to decide when the execution of an 

optimization algorithm should be terminated [20].  
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TABLE V. 

Pseudo-code for constraint handling 

 If  
0)( =XF

 

 1)( −−= JXf  

Else   

 
)()( XFXf =

 
End  

 

In literatures, mostly two stopping criteria are 

applied in single-objective optimization: either an 

error measure if the optimum value is known is 

used or the number of function evaluations 

(number of iterations). There are some drawbacks 

for both. The optimum has to be known in the 

first method, so it is generally not applicable to 

real-world problems because the optimum is 

usually not known a priori. The second method is 

highly dependent on the objective function. 

Because generally no correlation can be seen 

between an optimization problem and the 

required number of function evaluations 

(iterations), it has to be determined by trial-and-

error methods usually. Improper selection of the 

number of iterations to terminate the optimization 

can lead to either premature convergence or 

excessive computational effort. 

As a result, it would be better to use stopping 

criterion that consider knowledge from the state 

of the optimization run. The time of termination 

would be determined adaptively, so the 

optimization run would be efficient. Several 

stopping criterions are reviewed in [20]. Although 

the authors did not conclude which one is the best 

for all problems, it is believed that performance 

improvement can be obtained with adaptive 

stopping criterion. In this work, we adopt the 

stopping criterion which is distribution-based 

criterion which considers the diversity in the 

population. If the diversity is low, the individuals 

are close to each other, so it is assumed that 

convergence has been obtained [20]. Standard 

deviation (σ) of particles’ best positions in each 

dimension is checked. If it is below a threshold ε  

(small number) for sufficiently large number of 

iterations 
η

, the optimization will be terminated. 

It can be formulated as in Table VI. 

 

 

 

 

 

 
TABLE VI   

Stopping criterion 

If    

 

))min()(max()(
1

1

2

gdgd
pppp

j

gd

j

gdd −<−= ∑
=

ε
η

σ
η

  (for d=1,2,…,D) 

  stop iterations.  

End 

V. SIMULATION RESULTS 

The PSO-based optimization and simulation 

work is facilitated by Matlab 2006. Before the 

optimization is executed, a number of parameters 

must be specified.  The main PSO parameters are 

chosen based on explanation that has been 

discussed in previous section. These parameters 

are listed in Table VII.  

 
TABLE VII. 

PSO-based optimization parameters 

Dimension of the problem D 5 

Swarm (population) size N 50 

Cognitive acceleration constant c1 1.494 

Social acceleration constant c2 1.494 

Inertia weight  w 0.729 
Upper bound of initial swarm 
matrix ub 75 
Lower bound of initial swarm 
matrix lb  -75 

Maximum velocity  Vmax 75 (=ub) 

Maximum iteration jmax 2000 
Number of iteration for which 
stopping criterion applies 

η 500 

Standard deviation threshold  for 
which stopping criterion applies 

ε 1% 

 

 

The next is to choose the parameters of the 

wedge region (Fig. 4) whose role is to locate the 

closed loop poles of the system. The damping 

ratio is usually set to ζ=0.7 to produce sufficient 

overshoot damping in the response.  The transient 

margin (ρ) is specified according to the desired 

speed of the response. This is problem-dependent 

parameter. Here, we set ρ=1.5.  

Since PSO is stochastic optimization, a number 

of optimization runs need to be executed with 

different initial random seeds. To evaluate the 

quality of the solution (robustness, convergence, 

repeatability) obtained by PSO, 15 runs have been 

executed here. The mean value, the standard 

deviation of the fitness value (f(X)=J) and other 

results are recorded in Table VIII.  
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TABLE VIII.  

Optimization results 

Average f(X) -0.00029 

Median f(X) -0.00028 

Standard deviation f(X) 0.000027 

Range of f(X) -0.00034 to -0.00025 

Average number of iteration 1285 

Average computation time 11.5 seconds 

 

It can be seen that the optimization results in a 

robust solution where a small standard deviation 

is obtained, the range of the fitness value is also 

relatively small. Fig. 6 shows the distribution of 

the eigenvalues (closed loop poles) for 15 runs. 

All eigenvalues lie within the desired wedge 

region. It is also noted that the dominant 

eigenvalues lie nearby the straight horizontal 

margin line (ρ=1.5) and they are close to each 

others.  

Furthermore, for the purpose of evaluation and 

comparison with LQR-based controllers, an 

optimum solution is picked from the median data 

of those 15 runs. The corresponding optimum 

feedback controller gains obtained by PSO are 

shown in Table IX.  
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Fig 6. Distribution of eigenvalues within the wedge region 

 

   

A.  Swing-up and Tracking Response 

In this simulation, the pendulum is swung-up 

from the rest (downward pendulum) by giving 

sinusoidal input of the cart position. The travel 

distance of the cart is bounded by the amplitude of 

the reference input to ±0.3m. Then after the 

pendulum is stabilized by the stabilizing 

controller, the tracking mode is started at 10th 

second by giving a square wave reference input of 

cart position (±0.1m). The response is shown in 

Figs. 7-9. It can be seen from Fig. 8, the swing-up 

controller is able to swing the pendulum to 

upward posture within less than 4s.  

 

TABLE IX 
State feedback controller gains by PSO 

k1 k2 k3 k4 ki 

-35.01 65.64 -27.07 13.43 25.70 
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Fig. 7. Cart position response 

 

 
Furthermore, as seen in Fig. 9, the proposed 

state feedback control is able to maintain the 

pendulum upright with amplitude of less than 8o 

while keeping the cart moving back and forth to 

track the square wave input trajectory (Fig. 7).   
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Fig. 8. Pendulum swing angle response 
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B.  Disturbance Rejection 

In this section, disturbance rejection ability of 

the controller strategy is shown. After the 

pendulum swing-up and stabilization, 

disturbances at 10th and 18th second are 

introduced to the pendulum. The disturbance 

signal and the response to reject disturbance are 

shown in Figs. 10-11 respectively. It can be seen 

that the given disturbances are well compensated 

so that the pendulum is maintained upright even 

though the angle is beyond the switching margin 

(|θ|>25o).  
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Fig. 10. Disturbance signal to the pendulum swing angle 
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 Fig. 11. Pendulum swing angle response to disturbance signal in 

Fig. 8 

VI. CONCLUSIONS 

In this paper, an intelligent tuning method of 

state feedback control for stabilizing controller of 

a self-erecting inverted pendulum based on PSO 

has been presented. This approach has been 

motivated especially by the fact that the designers 

often have to face inconvenient free parameter 

adjustment in the controller design using 

conventional methods like LQR. Instead, by 

constrained optimization approach, it is 

transformed into parameter setting of the closed 

loop poles region (wedge region) that is more 

sensible in term of the desired system 

performance in time domain. 

In addition, the ability of the Clerc’s PSO 

combined with the efficient constraint handling is 

also demonstrated. The PSO-based optimizer did 

not take much time to obtain the convergence 

solutions. For further research, robust criterion 

and model uncertainty may be included and 

verification through experimental work is 

required as well.  
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