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 Abstract—This paper presents the application of 

Genetic Algorithm and Ant Colony Optimization 

(ACO) Algorithm for robot path planning (RPP) in 

global static environment. Both algorithms were 

applied within global maps that consist of different 

number of free space nodes. These nodes generally 

represent the free space extracted from the robot 

map. Performances between both algorithms were 

compared and evaluated in terms of speed and 

number of iterations that each algorithm takes to 

find an optimal path within several selected 

environments. The effectiveness and efficiency of 

both algorithms were tested using a simulation 

approach. Comparison of the performances and 

parameter settings, advantages and limitations of 

both algorithms presented herewith can be used to 

further expand the optimization algorithm in RPP 

research area. 
 

Index Terms—Mobile Robot, Robot Path 

Planning, Global Path Planning Algorithm 

 

I. INTRODUCTION 

ATH planning is an important task in 

autonomous mobile robot to enable the robot 

navigation system to identify a safe path (without 

colliding with obstacles) to goal. Path  
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lanning research covers a wide area of robotics 

research that includes path planning in static [1-

6] and dynamic environments [7-9]. In static 

environment, the environment is assumed to be 

known and the global path can be generated in 

advanced based on the provided map. This is 

known as a model-based approach which is 

implemented offline. In a  

dynamic environment, the mobile robot will 

respond to unexpected situation and the map is 

updated to create a new path in responds to the 

environment change. This is known as  

sensor based or online approach where the new 

path is constructed once the sensor detects that 

there are changes in  

the environment. However, the research presented 

herewith focused on path planning in static 

environment. 

Generally, there are two main elements 

involved in the process of global path planning, 

which are, the mapping and the path planning 

algorithms (PPAs). The environment will be 

mapped in the initial process. The existence of 

these maps will simplify the process of finding the 

optimal path when the PPAs are applied to the 

maps. Example of maps created and used by 

previous researchers for their RPP purposes is C-

Space such as generalized cones[10], cell 

decomposition; grid map [2, 4, 11], graph; 

visibility [12, 13] and MAKLINK graph 

[7].Within these maps, the area of feasible  (no 

obstacles) and non feasible nodes (obstacles) have 

been configured before PPAs are applied to find 

the paths. The selection and utilization of maps in 

a research must be compatible with the selected 

PPA and this depends on the objectives and 

applications of the research itself. 
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The evolution of PPAs shows improvements of 

PPA from one generation to the next 

generation[14]. The later generation of PPAs has 

been created to be more adaptive and able to work 

within the robot environment itself. Several 

traditional PPA approaches have been developed 

by previous researchers such as artificial potential 

fields [15-18], neural networks [19], heuristic 

algorithms [1, 11, 20] and etc. Each method has 

its own strength and limitations over others in 

certain aspects of path planning itself. The 

evolution of traditional approaches produced a 

widely used heuristic algorithm known as A* 

algorithm [1, 21]. This algorithm is widely used 

not only in static environments but it subsequently 

evolved to D* algorithm [11, 22] which is then 

widely used in partial known [22, 23] and 

dynamic environments[24]. 

However, since appearances of artificial 

intelligences [25, 26], the problem of path 

planning has been view as one of an optimization 

problem. The idea of utilizing artificial 

technologies in developing intelligent agent for 

RPP purposes has grown since then. Currently, 

researchers use neural networks [19], 

evolutionary computation [27-29] and swarm 

intelligence [30-33] in RPP research. This newer 

approach enables the identification of optimal 

robot path that satisfies optimization criteria such 

as shortest and fast with small computational 

time. The wide application of PPAs such as 

Genetic Algorithms (GA) [2, 4, 34-40] and Ant 

Colony Optimization (ACO) algorithm [7, 8, 41-

43] in RPP research is because it can produce the 

optimal path effectively compared to the 

traditional approaches. 

The research presented herewith investigates 

the effectiveness of GA and ACO applied in 

different complexity of free space nodes in a 

global map[44]. The performances of the 

algorithms were evaluated in terms of speed and 

number of iterations when both algorithms were 

applied in global maps with different complexity 

of free space nodes. The global maps that were 

constructed consists of different number of 

obstacles, different location of obstacles, or 

different type of mapping algorithms used which 

produced  different complexity of nodes. It is 

hoped that the findings from this research can be 

used by researchers in the RPP optimization area.  

This paper discusses GA and ACO algorithm 

construction including mapping of simple 

environments and complex environments that 

were used in this case study. Then the comparison 

of performances (using simulated data) between 

GA and ACO in terms of speed and number of 

iterations in different maps is presented. The 

pattern of the parameter settings for both 

algorithms in different complexity of environment 

as identified is also included. Finally the 

discussion of the usefulness of these algorithms in 

RPP research was discussed. 

II. RESEARCH BACKGROUND 

This section covers the utilization of GA and 

ACO in RPP research areas where different cases 

have different methods of presenting the solution 

to find an optimal robot path. 

A. Genetic Algorithm 

Since its appearance 1975 [27, 28], GA has 

been used in solving many robot path planning 

optimization problems. GA is a search technique 

inspired by evolutionary biology where it work is 

based on principle of the fittest of the 

chromosomes. With its ability to work with 

parallel search techniques, the use of GA 

contributed to the success in many robot path 

planning research. For example, Gihan Nagib et 

al [4]  proposed the use of GA to find robot path 

based on map of free space nodes. Kuzuo 

Sugihara [35], R. Ramakrishnan [37] also 

proposed the used of GA with different encoding 

techniques to ensure GA can find optimal path 

without depending on the feasible nodes given in 

the map. Yangrong Hu [45] modified classical 

GA by incorporating the domain knowledge into 

specialized operator to improve GA performances 

when it works in environments that consists of 

obstacles. From the above literature study, it can 

be concluded that GA performances depends on 

the way the solution is encoded in chromosomes, 

accuracy of the fitness function and variation of 

genetic operators which determine the whole 

process of GA. 

B.  Ant Colony Optimization Algorithm 

ACO, compared to GA is a newer optimization 

method.  Introduced by Marco Dorigo [30] in 

approximately 1992, the  application of this 

algorithm in RPP research increased rapidly as it 

is a powerful tool for solving hard combinatorial 

optimizations problem. ACO was inspired by 

analogy of behavior of real ants, when looking for 
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foods. Tan Guan Zheng [7]  proposed the use of 

ACO to find robot path based on map of 

MAKLINK graph. Hao Mei [8] combined ACO 

with Artificial Potential Field to produced the 

path planning in dynamic environment. Gengqian 
et al [41] have proven that ACO can find optimal 

path in their grid map by proposing its own 

probability equation. However, a literature study 

shows that the application of ACO to solve RPP 

problems has not been explored in detail. 

III. RESEARCH METHODOLOGY 

Fig. 1 below illustrates the proposed method 

applied within this research. In the beginning 

stage, the robot environment needs to be mapped 

using an appropriate global map as discussed in 

section A below. This map will create an output 

of nodes represented by x-y coordinates. Then, 

GA and ACO will start to initialize the 

population of path using its own approaches from 

start to goal by using all the provided nodes 

including the start, goal and all intermediate 

nodes. During the initialization, the integer 

number representing each node will be used. 

However, during the evaluation, the real x-y 

coordinates will be used. At the end of the 

process, the optimal path will be found.  

 

 

 

 

 

 
Fig.1.   Proposed Method 

A. Environment Modeling 

In this research, a 2D grid map as shown in Fig. 

2 below was used. The free space nodes (white 

grid) represent the area the robot can traverse 

including the robot size. The obstacles area (black 

grid) represents the boundary of obstacles with 

the safety region and the yellow grid represents 

the feasible free space nodes that can be traversed 

by the robot. However, during construction of the 

map used for this study, the obstacles was 

assumed  to have been eliminated and only a 

route of feasible nodes is left as shown in Figure 

4,5 and 6. 

By assuming the 10 X 10 cm grid map is the 

size of the map, three different complexities of 

free space nodes have been developed. A simple 

environment consists of 12 numbers of feasible 

free space nodes (Fig. 4), average complexity with 

22 numbers of nodes (Fig. 5) and complex 

environment have 63 numbers of nodes (Fig. 6). 

These feasible free space nodes have been located 

randomly within the grid map for this research 

study. By using these maps, the algorithm will 

asses all feasible paths using the available feasible 

nodes as shown in population of path as depicted 

in Fig. 3 below.  However during implementation, 

there will be non feasible nodes produced during 

the generation of the optimal path.       

IV. UNITS 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 2.   Global feasible map with obstacles 

 

   
   Feasible and unfeasible nodes 

 

Fig. 3.  A sample of path population consists of feasible nodes of 

Fig. 2 

 

 
 

Fig. 4.  Simple free space map 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.  Average free space map 
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Fig. 6.  Complex free space map 

 

B. Genetic Algorithm Design for RPP 

The outline of GA is given in Fig. 7. The initial 

solutions of the RPP problem will initialize in 

population randomly. In the first case, the 

population will initialize based on the feasible 

nodes provided in the global map only. With the 

complete population, the fitness is evaluated by 

using the formula below: 

 

Fitness node=√ (x2-x1)2 + (y2-y1) 2         (1) 

 

Total Fitness=     ∑ Fitness node   ;Feasible      (2)  

                                                                                                                                                                                                                                                              

100 Unfeasible         

 

After the fitness of each population has been 

evaluated, it will be ranked using an elitism 

approach. The shorter path will be represented 

with a high fitness value and will be selected to be 

carried forward to the next generation while the 

long path represented with a low fitness value will 

be eliminated and removed from the population. 

The good parents, which are carried forward to 

the next generation will produce the diversity of 

population that consists of a good child from the 

genetic operators process. Then, this process is 

repeated until all of the GA population found the 

same optimal path with no difference of the 

fitness value where the distance is equal to 0. It is 

at this moment, that the solution converges. 

However, type of GA and important parameters 

specifications related with GA used in this 

experimental research is defined in Table I below: 

 

 

 

 

 

 
TABLE I 

GA PARAMETER SPECIFICATIONS 

GA Properties Parameter 
Type of GA Classical GA 

Chromosomes type Fixed length chromosomes 

Population size Varies, depends on cases 

Chromosomes length Varies, depends on cases 

Selection type Elitism 

Crossover type Two point crossover 

Mutation type Flip bit 

Crossover rate 0.75 

Mutation rate 0.75 

Convergence criteria Cmax-Cmin≤0.00001 

 

C.  Ant Colony Optimization Design for RPP 

The ACO algorithm used in this experiment is 

the Ant System (AS) algorithm as proposed by 

Marco Dorigo [46]. However, equation (3), a new 

heuristic equation of the state transition rules, 

which is more suitable for the applications of this 

research, was used. The evaluation fitness and 

ACO parameter setting was created based on the 

requirements of this research. 

The design of AS for robot path planning was 

divided into three important rules which are state 

transition rules, local update rules and global 

update rules. In the beginning, ants will 

determine the next node to be visited by using the 

state transition rules based on heuristic and the 

amount of pheromone laid down by the ants as 

shown in equation (3) below: 
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Fig. 7.   Outline of GA for RPP of a mobile robot 

 

 

Probability ij=heuristic * pheromone                          

        (3)                                                                                                                                                                                                 

 

=[(1/distance between vector start to subpath and 

start to perpendicular subpath with reference 

goal)β * (trail/∑ trail) α]  

 

* β=heuristic coefficient, α=pheromone trail 

coefficient 

 

An accurate value of distance by heuristic 

equation and the higher amount of pheromone of 

the visited node will be obtained by the ants that 

have higher probability to choose that nodes. 

Within these rules, the ants can balance between 

the exploration and exploitation from the 

relatives’ coefficient provided, known as alpha 

and beta. During the construction of the path, the 

pheromone will be reduced locally by the given 

evaporation rate by using the formula of update 

local rules below: 

 

Τij (new trail) ←(1-ρ)* τij (old trail),               (4) 

 

* ρ=evaporation rate 

 

After all the ants complete  the path to goal, 

then the process of global updating is applied 

where ants will deposits its pheromone based on 

the path distance. 

 

tij ← tij  + ∑ ∆ tij
k                                                 (5) 

 

∆ tij
k = amount pheromone of ant m deposits on 

the path it has visited. It’s defined as below: 

                               

 

∆ tij
k=      Q/Ck                         ;if arc (i,j) belongs to 

path Pk                                         
                                                                        (6) 

                 0                     ;otherwise 

 

 

where Q is number of nodes and Ck  is the length 

of path  Pk  built by the ants 

 

The amount of pheromone will continuously be 

updated until it attracts more ants from the next 

generation to follow the shorter path. Finally, the 

optimal robot path is found by using behavior of 

ants’ concept as shown in Fig. 8 below. 

The parameter specifications of ACO utilized 

in this experiment is shown in Table II below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initialize 

population 

 

   Selection 

Encode the robot feasible nodes 

Generate population of path randomly based on 

robot feasible nodes available from start to goal 

Fitness evaluation 

Rank population according to fitness 

Select best parents with high fitness value 

Duplicate best parents and combined 

Crossover each pair of population 

Mutate each population 

 First population is generated (Pop x) 

New population (Pop x”) 

Calculate distances 

Rank population according to fitness 

Select best parents with high fitness value 

Solution Converge 
No 

Yes 

START 

END 
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Convergence condition 

END 

Initialize parameter 

Yes 

START 

Generate start point and goal point 

Apply state transition rules 

Move to the next node 

All ants reach  the goal point 

Evaluate fitness 

Apply Global Updating Rule 

No 

Yes 

Apply Local Updating Rule 

No 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 8.  Outline of ACO for RPP of a mobile robot 

 

 

 

TABLE II 

ACO PARAMETER SPECIFICATIONS 

 

ACO Properties Parameter 
Population of ants  Varies, depend on cases 

Length of ants junction Varies, depend on cases 

Pheromone trail coefficient,β 5 

Heuristic coefficient,α 5 

Evaporation rate,ρ 0.5 

Convergence condition Cmax-Cmin≤0.00001 

 

V. EXPERIMENTAL RESULTS & DISCUSSION 

 

A. GA performances in different complexity of 

free space  nodes  

 

 The parameter settings of the population size 

and length are based on the requirement of GA to 

determine the optimal path for each case study as 

shown in Table III below. The optimal path and 

the path cost found in ten test runs are recorded in 

Table IV below. In addition, the results of GA 

performances evaluated based on time and 

number of iteration required to obtain the optimal 

path is shown in Table V. The optimal path found 

by GA for each type of complexity environment as 

illustrated in the MATLAB workspace area are 

shown in Figures. 9, 10 and 11.  
 

 

TABLE III 

GA PARAMETER SPECIFICATIONS 

Environment 12 nodes 22nodes 
 

63 nodes 

Population Size 50 50 200 

Length 8 15 20 

 

 

TABLE IV 

PATH AND PATH COST FOUND BY GA 

 

 
 

TABLE V 

COMPUTATION TIME AND ITERATION 

 

Fig. 9: Optimal path found in 6
th
 generation (12 nodes) 

 

Fig. 10: Optimal path found in 8
th
 generation (22 nodes) 

 

Environment 12 nodes 22nodes 
 

63 nodes 

 Path 1.3.11.2.12 1.21.15.9.17.22 1.61.11.22.29.34.42. 

48.49.63 

Average Path 

Cost 

13.053 13.142 14.136 

Environment 12 nodes 22nodes 63 nodes 
Average time (sec) 72.1244 242.7488 2144.84 

Average iteration 7.7 9.5 21.8 

6 
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Fig. 11: Optimal path found in 23
h
 generation (63 nodes) 

 

Based on the results tabulated in Table V, 

performances of GA in terms of time and number 

of iteration it takes to find the optimal path 

increases as the number of free space nodes 

increase. Average time GA takes to converge in 

ten test runs is around 72 seconds for 12 nodes, 

242 seconds for 22 nodes and 2145 seconds for 63 

nodes. The percentage of time increment for each 

case is 3.38% increment from 12 nodes to 22 

nodes and 8.823% increment from 22 nodes to 63 

nodes. In addition, the number of iteration also 

increased similar to the increment of time. 

Starting from an average number of 7 iterations 

for 12 nodes it then increased to 10 iterations for 

22 nodes and 22 for 63 nodes.  

Thus, it can be concluded that an increment in 

the number of nodes within the environment will 

affect the process of optimization, i.e. increase the 

time and number of iteration that GA takes to 

find an optimal path.  

The main factors that will affect the time and 

number of iteration of GA were the increment of 

the chromosomes length which is proportional to 

the increment of the number of nodes. The higher 

the number of feasible nodes, the longer length of 

chromosomes is required to allocate intermediate 

nodes within the chromosomes in order to 

produce the complete population of path to goal. 

With enough length of chromosomes, GA can 

perform effectively to cross and mutate the 

chromosomes to produce many population of 

optimal path until the solution converged. 

However, due to the increment of length, GA 

needs more time to initialize the population of 

path and to calculate the fitness of each 

chromosome for every single bit of chromosome 

that represent the distance value from one node to 

another node. In addition, variety type of child 

population has been produced from the population 

of parents which have long length chromosomes. 

With this variation of child, the process of finding 

an optimal path in the next generation became 

difficult based on the quality of the child itself. 

This causes GA, to require more time and 

additional number of iteration to find the optimal 

path to goal. 

Another reason for the increment of time is 

because of the increment of the size of population 

when the number of nodes increased. The size of 

population need to be increased when the number 

of nodes increases to ensure the number of 

suboptimal path within the population in each 

generation is enough to produce the next quality 

child for the next generation. This is to guarantee 

GA can find the optimal path when the solution is 

converges. In an environment with simple 

complexity, the less number of nodes will produce 

less number of variety child which will definitely 

drive GA to converge efficiently. However, in a 

complex environment there are more nodes and 

thus the possibility to have variety type of 

population is high which will make it more 

difficult to find the optimal path. To solve this 

problem, the number of population also should be 

increased to get the suboptimal path in each 

generation easier and thus guarantee that the GA 

can find an optimal path while the solution 

converges. 

Thus it can be concluded that when the 

number of feasible nodes increases (i.e. 

complexity increases), the settings of parameters 

such as the population size and length of 

chromosomes should also be increased.  This will 

then lead to the increment of time and number of 

iterations the GA takes to find the optimal path.  

This indicates that GA is more suitable for simple 

and average complex environment where the time 

and number of iterations will be less compared to 

that of the times and iteration number required 

for a complex environment. However, although it 

takes a longer time and higher number of 

iterations, GA is a robust optimization algorithm 

as it can find the optimal path quite efficiently in 

environments of different complexity.  
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B. ACO performances in different complexity of 

free space  nodes 

 

For the ACO algorithm test runs, the parameter 

settings of the population size and length for each 

case study were set similar with GA to ensure that 

the comparison is valid. Table VI are the average 

results from 10 tests runs that shows the average 

time and no of iterations required by the ACO to 

find the optimal path.  The optimal path found by 

ACO is the same as found by GA for each case. 
 

 

TABLE VI 

COMPUTATION TIME AND ITERATION 
 

 

 

As shown in Table VI, the average convergent 

time required by ACO are around 9 seconds for 

environments with 12 nodes, 33 seconds with 22 

nodes and 815 seconds for the complex 

environment with 63 nodes. This shows that 

when the number of nodes increased, the time 

taken by the ants to find optimal path will also 

increase. This is because the calculation of 

probability to choose the next node will also 

increase when the ACO is faced with multiple 

number of iteration within the environment. 

Another reason is the increase in multiple 

adjacent nodes to be traversed by ants. This then 

will increase the number of possible nodes to goal 

thus causing the ACO to require additional time 

and additional number of iterations to converge as 

shown in table VI. 

C. Comparative study of GA and ACO in 

different complexity of free space nodes 

 

Table VII below shows the performances of GA 

and ACO. As shown, the time and number of 

iterations for both GA and ACO increases as the 

number of feasible nodes increases (increase 

complexity). ACO seems to perform better. ACO 

has the robustness of the optimization algorithm 

compared to GA for this RPP purpose where it 

can still maintain the performances of time and 

number of iteration it takes to find optimal path in 

three different complexity of the environment as 

shown at Fig. 12 and Fig. 13. 

TABLE VII 

PERFORMANCES OF GA AND ACO IN DIFFERENT COMPLEXITY 

OF ENVIRONMENT 

 
 

 

One of the main reasons for ACO’s good 

performance is due to the behavior of the 

algorithm i.e. how it works to initialize the 

population. The way GA initialize the population 

is based on random approaches where the next 

node to be visited is randomly chosen from an 

adjacent feasible node. Due to this random 

process, the algorithm need to go through the 

process of selection and some other process to 

choose the optimal node which will contribute to 

increment of time and number of iterations 

especially when the number of nodes increases. It 

contrast, the ACO utilize the state transition rules 

which is efficient and enables it to skip to the 

process of finding the optimal path thus reducing 

the time and number of iterations required to find 

the optimal path in either a simple environment 

or complex environment. 

In addition, the quality of population in each 

generation will also influence algorithm 

performances. In ACO, the global and local 

updating approaches is efficient because it will 

improve the number of optimal path in each 

generation, this will make the solution  faster 

with fewer number of iteration. However, this 

differs with GA where GA will carry the good 

population to produce the next child in the next 

generation however there is no guarantee to 

improve the solution rapidly as the child is 

produced in random approach. Thus the child 

may come from good categories or worst 

categories which will then influence the 

population of the next generation. Hence, this will 

affect the time and number of iterations that GA 

takes to find the solution will be greater than 

ACO’s. 

Furthermore, when the number of nodes 

increases, the size of chromosomes length also 

need to be adjusted based on the requirement in 

each case. Small number of nodes only needs a 

Environment 12 nodes 22nodes 63 nodes 
Average time(sec) 

 

9.337 32.566 814.819 

Average no. of  

iteration 

1.9 3.1 3.5 

Number of 

nodes 

12 nodes 22 nodes 63 nodes 

Algorithm 

 

GA ACO GA ACO GA ACO 

Time (sec) 72.12

44 

9.337 242.7

088 

32.566 2144

.84 

814.8

19 

No. of 

Iteration 

 

7.1 1.9 9.5 3.1 21.8 3.5 

8 
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small number of lengths to allocate the paths 

within the chromosomes while the complex 

numbers of nodes will need a complex number of 

chromosomes. The increment of length will affect 

the whole process of GA to find optimal path 

because the population of the next child in each 

generation will be produced based on the cross 

over and mutation process. During this process, 

the point to be cross and mutate will be 

determined randomly based on the length of the 

chromosomes. The more the length, the more 

possibility of GA to have a variety of population 

which will cause the process of finding the 

optimal path more challenging and 

simultaneously will contribute to the increment of 

time and number of iteration. It is different with 

ACO where the length of chromosomes size will 

not influence the next ant’s population as it is 

based on heuristic and pheromone value carried 

by the previous ants. Therefore, length will 

increase the time ants need to traverse from one 

node to another node and not influences the next 

node to be traversed by the ants. 

With the increment of length usually GA also 

need to increase the population in order to get the 

optimal path. This will cause the process of GA to 

find path to become slower. In contrast with GA, 

for ACO, it is not necessary to increase the 

population because it will not affect the process. 

Thus this helps ACO to minimize the time and 

number of iterations. 

Based on the reason and the results obtained 

above, it can be concluded that ACO is practical 

to be use either in small or complex number of 

nodes compared to GA. ACO can find the optimal 

path and satisfy the optimization criteria at a 

faster rate than GA for all environment type.  

In addition, it is easier to set the parameters for 

ACO compared to GA. In ACO, only the length 

needs to be changed in each case, however for 

GA, when the environment complexities are 

changed, there is a need to ensure the balancing 

of the value of population, length and 

convergence criteria. From here it shows that the 

applications of ACO algorithm in RPP can be 

expanded by applying this algorithm in any type 

of global map that consists of multiple numbers of 

nodes, i.e. global map created with complex 

obstacle environment, global map created in a 

large indoor or outdoor environment etc. ACO 

can also be used to optimize not only global paths 

but also local paths. However, although GA is not 

as robust as ACO in optimizing the solution of 

RPP problem, it can still be used in applications 

that do not require fast solution as GA is able to 

provide solutions to path planning in complex 

environments but at a slower rate. 

VI. CONCLUSIONS 

GA and ACO were successfully implemented to 

find optimal path that satisfies the optimization 

criteria in the global static environments. Both 

algorithms performances were evaluated to 

determine the effectiveness of both algorithms 

when it is applied in global static environment of 

different complexities. Findings from this 

research proved that ACO performance in terms 

of speed is much faster compared to GA while the 

number of iteration required is less for ACO 

compared to GA in each different complexity of 

feasible nodes in the global maps. In addition, the 

adjustment of ACO parameters to adapt to 

environments of different complexities of feasible 

nodes is also much easier compared to GA. 

Advantages and limitations of both algorithms 

can be further explored to expand the applications 

of both optimization algorithms in robot path 

planning research area. 

 
 

Fig. 12.  GA & ACO computation time 
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Fig. 13.  GA & ACO iteration 
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