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Most numerical methods require very extensive calculations and use 
very large computer memory. The resulting numerical solution is also 
very sensitive to any small changes in the parameters present in the 
differential equation.  This paper presents research finding that has 
been conducted with two objectives. First objective is to solve the 
Newell-Whitehead-Segel (NWS) equation using integral iterative 
method (IIM). Second objective is to determine the accuracy, reliability 
and efficiency of IIM by compared to the exact solution and other 
existing results obtained by other methods such as New Iterative 
Method (NIM), Adomian decomposition method (ADM) and Laplace 
Adomian decomposition method (LADM).  This iterative method was 
calculated based on the integral operator, that is the inverse of the 
differential operator in the problem under consideration. The analytical 
solution of the equation was calculated in the form of power series 
solution. Results of this research has identified that the method is 
simpler in its computational procedures and needs shorter time to be 
completed than the other methods. It does not require discretization, 
linearization or any restrictive assumption in order to provide analytical 
and approximate solution.  The technique provides in this research 
introduced a straightforward and powerful mathematical tool for 
solving various differential equations. 
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1. Introduction

The Newell-Whitehead-Segel (NWS) equation is an important model in fluid mechanics. This 
equation, which is a kind of nonlinear partial differential equation (PDE) is used for some problems 
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in various system such as Faraday instabilities, biological systems, and Rayleigh-Bernard 
convection. The equation of NWS [1][2] is described in equation (1) and equation (2). 

𝑢𝑡(𝑥, 𝑡) = 𝑎𝑢𝑥𝑥(𝑥, 𝑡) + 𝑏𝑢(𝑥, 𝑡) − 𝑐𝑢𝑚(𝑥, 𝑡) (1) 

𝑢(𝑥, 𝑡) = 𝑓(𝑥) (2) 

where 𝒃, 𝒄 are real numbers and 𝒂, 𝒎 are positive integers. 

Due to its wide range of applications, NWS equation has attracted much intention by 

researchers to find the accurate and efficient method for solving the equation. Some of these 

methods are Adomian decomposition method (ADM) [3],[4], Laplace-Adomian decomposition 

method (LADM) [5], homotopy perturbation method (HPM) [6], variational iterative method (VIM) [7] 

and new iterative method method (NIM) [8]. A comparative study between reduced differential 

transform method (RDTM) and ADM for solving NWS equation was conducted by Saravanan and 

Magesh [9]. Meanwhile, Jassim [10] applied the HPM using Laplace transform to solve the NWS 

equation. Recently, Busyra et al. [11] successfully applied the semi analytical iterative method (SAIM) 

to approximate solution of NWS equation. Also, Almousa et al. [12] presented the application of the 

Mahgoub Adomian decomposition method while Elgazery [13] applied fractional calculus to solve 

NWS equation. 

The purpose of this article is to solve numerically the NWS equation by applying an iterative 

method called integral iterative method (IIM). This method, proposed by Hemeda [14] to solve 

nonlinear integro-differential and systems of integro-differential equations. Hemeda and Eladdad [15] 

successfully applied the IIM to solve the Fokker-Planck equation. It is worth to mentioned that IIM 

may be considered as a new approach for Picard method, [16],[17]. To the best of our knowledge, 

the study of NWS using IIM has not been done. 

2. Literature Review

2.1 Integral Iterative Method 

Consider the general partial differential equations of arbitrary order are [14]: 

𝜕𝑛𝑢(𝑥, 𝑡)

𝜕𝑡𝑛
= 𝐴(𝑢, 𝜕𝑢) + 𝐵(𝑥, 𝑡), 𝑛 ∈ 𝑁 

(3) 

𝜕𝑘𝑢(𝑥, 0)

𝜕𝑡𝑘
= ℎ𝑘(𝑥),      𝑘 = 1, 2, … , 𝑛 − 1

(4) 

where 𝑨 is a nonlinear function of  𝒖, 𝝏𝒖 (partial derivatives of 𝒖 with respect to 𝒙 and 𝒕 ) and 𝑩 is a 
nonhomogeneous term. In view of integral operators, the initial value problem in equation (3) and 
equation (4) is equivalent to the following integral equation (5).  

𝑢(𝑥, 𝑡) = ∑ ℎ𝑘(𝑥)
𝑡𝑘

𝑘!
+ 𝐼𝑡

𝑛𝐵 +

𝑛−1

𝑘=0

𝐼𝑡
𝑛𝐴 = 𝑓 + 𝑁(𝑢) (5) 

where 𝒇 = ∑ 𝒉𝒌(𝒙) 𝒕𝒌 𝒌!⁄ + 𝑰𝒕
𝒏𝑩𝒏−𝟏

𝒌=𝟎 . 𝑵(𝒖(𝒙)) = 𝑰𝒕
𝒏𝑨 and 𝑰𝒕

𝒏 is an 𝒏𝒕𝒉 − 𝒐𝒓𝒅𝒆𝒓 (𝒏 − 𝒇𝒐𝒍𝒅) integral

operator. The required solution 𝒖(𝒙, 𝒕) for equation (6) and hence equation (3) and equation (4) can 
be obtained recurrently by employing the simple recurrence relation: 

𝑢0 = 𝑓, (6) 

𝑢𝑟+1 = 𝑢0 + 𝑁(𝑢𝑟),  𝑟 = 0,1,2, . . . (7)
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where 𝒖(𝒙, 𝒕) = 𝐥𝐢𝐦

𝒓→∞
𝒖𝒓(𝒙, 𝒕).     

       

The IIM works directly on problems with initial condition and boundary condition after 

transferring these conditions to initial conditions. For mixed condition, the IIM can be made for works 

by choosing the initial solution as a function depending on the given mixed conditions such that this 

initial solution satisfies almost all the given mixed conditions [14]. 

 

3.  Research Method 

In this section the NWS equation will be solved by using IIM. equation (1) can be written 

equivalently as: 

 𝑢 = 𝑓(𝑥) + 𝑁(𝑢) (8) 

where  

 
𝑁(𝑢) = ∫(𝑎𝑢𝑥𝑥(𝑥, 𝑡) + 𝑏𝑢(𝑥, 𝑡) − 𝑐𝑢𝑚(𝑥, 𝑡))𝑑𝑡 

(9) 

then by using IIM, we can obtain the recurrence relation:  

 

 𝑢0 = 𝑓, (10) 

 
𝑢𝑟+1 = 𝑓 + ∫(𝑎(𝑢𝑟)𝑥𝑥(𝑥, 𝑡) + 𝑏𝑢𝑟(𝑥, 𝑡) − 𝑐𝑢𝑟

𝑚(𝑥, 𝑡))𝑑𝑡 
(11) 

where  𝒓 = 𝟎, 𝟏, 𝟐, . . .. and so on. 

 The required solution 𝑢(𝑥, 𝑡) for equation (8) which is also the solution for equation (1) and 

equation (2) can be obtained from the recurrence relation of equation (10) and equation (11). 

 
3.1. Illustrative Example 

In this section, three numerical examples are considered to be solved by IIM to reveal the 
reliability and accuracy of the method. 
 
Example 1 

Given the NWS equation as follows 
 
 𝑢𝑡(𝑥, 𝑡) = 5𝑢𝑥𝑥(𝑥, 𝑡) + 2𝑢(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) (12) 

 
with initial condition 
 
 𝑢(𝑥, 0) = 𝜆 (13) 

where the exact solution is 
 
 

𝑢(𝑥, 𝑡) =
2𝑒2𝑡𝜆

2 + (1 − 𝑒2𝑡)𝜆
 

(14) 

By using IIM, the equivalent integral equation of (4.1) is 
 

𝑢 = 𝜆 + ∫ (5𝑢𝑥𝑥 + 2𝑢 + 𝑢2)𝑑𝑡
𝑡

0

 
(15) 

Thus, the first a few iterative solutions are, 

  



                

4 

 

   

 𝑢0(𝑥, 𝑡) = 𝜆  

 𝑢1(𝑥, 𝑡) = 𝜆 + (𝜆2 + 2𝜆)𝑡  

 
𝑢2(𝑥, 𝑡) = 𝜆 + 2𝜆𝑡 + (𝜆2 + 2𝜆)𝑡2 +

1

3

(𝜆 + (𝜆2 + 2𝜆)𝑡)3

𝜆2 + 2𝜆
 

(16) 

 
𝑢3(𝑥, 𝑡) = 𝜆 + 2𝜆𝑡 + 2𝜆𝑡2 +

2

3
(𝜆2 + 2𝜆)𝑡3 +

1

6

(𝜆 + (𝜆2 + 2𝜆)𝑡)4

(𝜆2 + 2𝜆)2
+

1

63
(𝜆2

+ 2𝜆)4𝑡7 +
1

9
(𝜆2 + 2𝜆 + 𝜆(𝜆2 + 2𝜆))(𝜆2 + 2𝜆)2𝑡6 +

1

5
(
2

3
(𝜆2

+ 2𝜆)3 + (𝜆2 + 2𝜆 + 𝜆(𝜆2 + 2𝜆))2𝑡5 +
1

4
(
2

3
(𝜆

+
1

3

𝜆3

(𝜆2 + 2𝜆)
)(𝜆2 + 2𝜆)2 + 2(𝜆2 + 2𝜆)(𝜆2 + 2𝜆 + 𝜆(𝜆2

+ 2𝜆)))𝑡4 +
1

3
(2 (𝜆 +

1

3

𝜆3

(𝜆2 + 2𝜆)
) (𝜆2 + 2𝜆 + 𝜆(𝜆2 + 2𝜆))

+ (𝜆2 + 2𝜆)2)𝑡3 + (𝜆 +
1

3

𝜆3

(𝜆2 + 2𝜆)
) (𝜆2 + 2𝜆)𝑡2 + (𝜆

+
1

3

𝜆3

(𝜆2 + 2𝜆)
)2𝑡 

            

 

 ⋮  

 

By letting 𝜆 = 12, the fifth iterative solution is: 

 
𝑢4(𝑥, 𝑡) = 12 +

410460

2401
𝑡 +

8455704

2401
𝑡2 +

115611376

2401
𝑡3 +

28864904

49
𝑡4

+
1

71124480
(12 + 168𝑡)5 + 3768825984𝑡8

+
17914080512

35
𝑡7 +

2133965632

35
𝑡6 +

317273472

49
𝑡5

+
53293212499968

5
𝑡15 + 12371638616064𝑡14

+
435108944019456

65
𝑡13  +

11800569102336

5
𝑡12

+
173259776987136

275
𝑡11 +

3383696031744

25
𝑡10

+
121288308736

5
𝑡9 

(17) 

In this study, we let 𝑡 ∈ [0,0.05] to execute the solution. The results have been plotted as presented 
in Figure 1 in the Section five of this paper. 
 
Example 2 

Next, we consider the linear NWS equation: 
 𝑢𝑡(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) + 2𝑢(𝑥, 𝑡) − 3𝑢2(𝑥, 𝑡) (18) 

 
with initial condition  
 𝑢(𝑥, 0) = 𝜆 (19) 

 
where the exact solution is  
 

𝑢(𝑥, 𝑡) = −
2𝑒2𝑡𝜆

−2 + 3(1 − 𝑒2𝑡)𝜆
 

(20) 
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In view of IIM, the equivalent integral equation of (4.7) is 

 

𝑢 = 𝜆 + ∫(𝑢𝑥𝑥 + 2𝑢 − 3𝑢2)𝑑𝑡

𝑡

0

 
(21) 

 

Thus, the first a few iterative solutions are, 

  𝑢0(𝑥, 𝑡) = 𝜆  

 𝑢1(𝑥, 𝑡) = 𝜆 + (−3𝜆2 + 2𝜆)𝑡  

 
𝑢2(𝑥, 𝑡) = 𝜆 + 2𝜆𝑡 + (𝜆2 + 2𝜆)𝑡2 +

(𝜆 + (−3𝜆2 + 2𝜆)𝑡)3

−3𝜆2 + 2𝜆
 

(22) 

 
𝑢3(𝑥, 𝑡) = 𝜆 + 2𝜆𝑡 + 2𝜆𝑡2 +

2

3
(−3𝜆2 + 2𝜆)𝑡3 −

1

2

(𝜆 + (−3𝜆2 + 2𝜆)𝑡)4

(−3𝜆2 + 2𝜆)2

−
3

7
(−3𝜆2 + 2𝜆)4𝑡7 + (−3𝜆2 + 2𝜆 − 3𝜆(−3𝜆2 + 2𝜆))(−3𝜆2

+ 2𝜆)2𝑡6 −
3

5
(−2(−3𝜆2 + 2𝜆)3 + (−3𝜆2 + 2𝜆

− 3𝜆(−3𝜆2 + 2𝜆))2𝑡5

−
3

4
(−2 (𝜆 −

𝜆3

−3𝜆2 + 2𝜆
) (−3𝜆2 + 2𝜆)2

+ 2(−3𝜆2 + 2𝜆)(−3𝜆2 + 2𝜆 − 3𝜆(−3𝜆2 + 2𝜆))) 𝑡4

− (2 (𝜆 −
𝜆3

−3𝜆2 + 2𝜆
) (−3𝜆2 + 2𝜆 − 3𝜆(−3𝜆2 + 2𝜆))

+ (−3𝜆2 + 2𝜆)2)𝑡3 − 3 (𝜆 −
𝜆3

−3𝜆2 + 2𝜆
) (−3𝜆2 + 2𝜆)𝑡2

− 3 (𝜆 −
𝜆3

−3𝜆2 + 2𝜆
)

2

𝑡 

            

 

 ⋮  

 

By letting 𝜆 = 0.1, the sixth iterative solution is: 

 𝑢5 = 0.999999999993788 + 0.170000000018107𝑡 + 0.119000000033565𝑡2

+ 0.0266333333583805𝑡3 −  0.021033333283682𝑡4

− 0.0198163333405179𝑡5 − 0.00548907333544101𝑡6

+ 0.00614130504512453𝑡7 + 0.00313447955062534𝑡8

− 0.000415228058422366𝑡9 − 0.000874752934866484𝑡10

− 0.000188386366019455𝑡11 + 0.000144045878042441𝑡12

+ 0.0000675763321449903𝑡13

− 0.0000103564139477513𝑡14

− 0.0000140708642079103𝑡15 − 2.564993578 10−7𝑡16

+ 0.00000200797937450533𝑡17 + 1.512932613 10−7𝑡18

− 2.099346146 10−7𝑡19 − 2.229781509 10−8𝑡20

+ 1.953373900 10−8𝑡21 + 1.230349420 10−9𝑡22

− 1.530674249 10−9𝑡23 + 8.173929604 10−11𝑡24

+ 6.638546442 10−11𝑡25 − 1.221463855 10−11𝑡26

− 3.329735922 10−13𝑡27 + 3.419411739 10−13𝑡28

− 4.554252295 10−14𝑡29 + 2.703863174 10−15𝑡30

− 6.354701471 10−17𝑡31 

(23) 

 

In this example, we let 𝑡 ∈ [0,0.1] to execute the solution. The results will be plotted in Figure 3. 
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Example 3 

Consider the linear NWS equation: 
 𝑢𝑡(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) − 3𝑢2(𝑥, 𝑡) (24) 

 
subject to the initial condition: 
 𝑢(𝑥, 0) = 𝑒2𝑥 (25) 

 
where the exact solution is:  
 𝑢(𝑥, 𝑡) = 𝑒2𝑥+𝑡 (26) 

 
 
In view of IIM, the equivalent integral equation of (4.13) is 
 

𝑢 = 𝜆 + ∫(𝑢𝑥𝑥 − 3𝑢2)𝑑𝑡

𝑡

0

 
(27) 

 
Thus, the first a few iterative solutions are, 
  𝑢0(𝑥, 𝑡) = 𝑒2𝑥  

 𝑢1(𝑥, 𝑡) = 𝑒2𝑥 + 𝑒2𝑥𝑡  

 
𝑢2(𝑥, 𝑡) = 𝑒2𝑥 + 𝑒2𝑥𝑡 +

1

2
𝑒2𝑥𝑡2 

(28) 

 
𝑢3(𝑥, 𝑡) = 𝑒2𝑥 + 𝑒2𝑥𝑡 +

1

2
𝑒2𝑥𝑡2 +

1

6
𝑒2𝑥𝑡3 

            

 

 ⋮  

 
Therefore, the 𝑢𝑛(𝑥, 𝑡) solution is given by 
 

𝑢𝑛(𝑥, 𝑡) = 𝑒2𝑥(1 + 𝑡 +
𝑡2

2
+

𝑡3

6
+

𝑡4

24
+ ⋯ 

(29) 

 
by using 𝑢(𝑥, 𝑡) = lim

𝑛→∞
𝑢𝑛(𝑥, 𝑡) , leads to 𝑢(𝑥, 𝑡) = 𝑒2𝑥+𝑡 , which is the exact solution of equation (24). 

 
 
 
4. Results and Discussion 

In this section we compare the fifth iteration of our result in the first example with the exact 
solution, fourth iterative solution obtained using NIM by Patade and Bhalekar [8] and LADM by Pue-
On [5]. For the second example we compare the sixth iterative of our results with the exact solution, 
fourth term solution NIM by Patade and Bhalekar [8], ADM by Saravanan and Magesh [9].  

Figure 1 presents the comparison solution by IIM, NIM, LADM and exact solution. The 
value of 𝑢(𝑥, 𝑡) of IIM which is close to the exact solution compared to NIM and LADM. The results 
of this example show that the IIM is more accurate than ADM and LADM. 

 Furthermore, the comparison of magnitude error between IIM, exact solution, NIM and 

LADM have been depicted in Figure 2.  At 𝑡 = 0, the accuracy of these three methods is similar since 

the magnitude of error is 0. As 𝑡 increase the accuracy reduce significantly. However, the magnitude 

errors of IIM are lower than NIM and LADM. Therefore, the IIM is proved to be more efficient and 

more accurate.  

Figure 3 show the results by IIM, NIM, ADM and exact solution for example 2. At 𝑡 = 0 or 

close to 0, all the methods are in good agreement with exact solution. However as 𝑡 increase the 

results by IIM is more accurate than NIM and ADM. 

It also can be seen in Figure 4 where the magnitude of error by IIM is close enough to zero 
compared to other methods. This indicates the efficiency and accuracy of IIM in solving NWS 
equation. 
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Figure 1. Comparison solution by IIM, NIM, LADM and exact solution for 𝜆 = 12 

 

 

 
Figure 2. Comparison of magnitude error between IIM, exact solution, NIM and LADM for 

𝜆 = 12. 
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Figure 3. Comparison solution by IIM, NIM, ADM and exact solution for 𝜆 = 0.1 

 

 

 

 

Figure 4. Comparison of magnitude error between IIM, exact solution, NIM and ADM for 

𝜆 = 0.1. 
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5. Conclusion  
 In this work, IIM has been applied successfully for solving 3 examples of NWS equations. In 
the first example the obtained results are compared with those obtained by both NIM and LADM. On 
the other hand, for the example 2, the results are compared with NIM and ADM. The comparisons of 
the results by all the methods shows that IIM provide more accurate results than others. Meanwhile, 
in example 3, it is apparently seen that IIM is very efficient and powerful to get the exact solutions in 
a rapid convergent form. From all examples, indicates the reliability, efficiency and accuracy of IIM 
when implemented to NWS equation. The performance and computer friendly solution procedure of 
IIM proved that IIM is an excellent tool for system of differential equation. 
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