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Most numerical methods require very extensive calculations and use
very large computer memory. The resulting numerical solution is also
very sensitive to any small changes in the parameters present in the
differential equation. This paper presents research finding that has
been conducted with two objectives. First objective is to solve the
Newell-Whitehead-Segel (NWS) equation using integral iterative
method (IIM). Second objective is to determine the accuracy, reliability
and efficiency of IIM by compared to the exact solution and other
existing results obtained by other methods such as New lterative
Method (NIM), Adomian decomposition method (ADM) and Laplace
Adomian decomposition method (LADM). This iterative method was
calculated based on the integral operator, that is the inverse of the
differential operator in the problem under consideration. The analytical
solution of the equation was calculated in the form of power series
solution. Results of this research has identified that the method is
simpler in its computational procedures and needs shorter time to be
completed than the other methods. It does not require discretization,
linearization or any restrictive assumption in order to provide analytical
and approximate solution. The technique provides in this research
introduced a straightforward and powerful mathematical tool for
solving various differential equations.
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1. Introduction

The Newell-Whitehead-Segel (NWS) equation is an important model in fluid mechanics. This
equation, which is a kind of nonlinear partial differential equation (PDE) is used for some problems
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in various system such as Faraday instabilities, biological systems, and Rayleigh-Bernard
convection. The equation of NWS [1][2] is described in equation (1) and equation (2).

U (x, t) = auy, (x,t) + bu(x, t) — cu™(x, t) 1)
u(x,t) = f(x) 2

where b, ¢ are real numbers and a, m are positive integers.

Due to its wide range of applications, NWS equation has attracted much intention by
researchers to find the accurate and efficient method for solving the equation. Some of these
methods are Adomian decomposition method (ADM) [3],[4], Laplace-Adomian decomposition
method (LADM) [5], homotopy perturbation method (HPM) [6], variational iterative method (VIM) [7]
and new iterative method method (NIM) [8]. A comparative study between reduced differential
transform method (RDTM) and ADM for solving NWS equation was conducted by Saravanan and
Magesh [9]. Meanwhile, Jassim [10] applied the HPM using Laplace transform to solve the NWS
equation. Recently, Busyra et al. [11] successfully applied the semi analytical iterative method (SAIM)
to approximate solution of NWS equation. Also, Almousa et al. [12] presented the application of the
Mahgoub Adomian decomposition method while Elgazery [13] applied fractional calculus to solve
NWS equation.

The purpose of this article is to solve numerically the NWS equation by applying an iterative
method called integral iterative method (IIM). This method, proposed by Hemeda [14] to solve
nonlinear integro-differential and systems of integro-differential equations. Hemeda and Eladdad [15]
successfully applied the IIM to solve the Fokker-Planck equation. It is worth to mentioned that 1IM
may be considered as a new approach for Picard method, [16],[17]. To the best of our knowledge,
the study of NWS using IIM has not been done.

2. Literature Review

2.1 Integral Iterative Method
Consider the general partial differential equations of arbitrary order are [14]:

TUCOD) _ g w,0u) + BGx, O)m € N )
T (u,0u) + B(x,t),n

*u(x, 0) @

— g =h), k=12.,n-1

where 4 is a nonlinear function of u, du (partial derivatives of u with respectto x and t ) and B is a
nonhomogeneous term. In view of integral operators, the initial value problem in equation (3) and
equation (4) is equivalent to the following integral equation (5).

n-1

k
u(x, t) = z hk(x)%+ I'B + A = f + N(w) (5)
k=0

where f =Y 2h,(x)t¢/k! + I!B. N(u(x)) = I*A and I? is an n'* — order (n — fold) integral
operator. The required solution u(x, t) for equation (6) and hence equation (3) and equation (4) can
be obtained recurrently by employing the simple recurrence relation:

Uy =f, (6)

Ury1 = Ug + N(ur); r= 0,1,2,... (7)



where u(x, t) = lim u,.(x, t).
r—00

The IIM works directly on problems with initial condition and boundary condition after
transferring these conditions to initial conditions. For mixed condition, the 1IM can be made for works
by choosing the initial solution as a function depending on the given mixed conditions such that this
initial solution satisfies almost all the given mixed conditions [14].

3. Research Method
In this section the NWS equation will be solved by using IIM. equation (1) can be written
equivalently as:

u=f(x)+Nw 8
where
N(w) = f (@it (x, £) + bu(x, £) — cu™(x, £))dt )
then by using IIM, we can obtain the recurrence relation:
up = f, (10)
- m (11)
Uryg = f + (a(ur)xx(x' t) + bur(x: t) — CUy (x' t))dt

where r=0,1,2,....and so on.
The required solution u(x, t) for equation (8) which is also the solution for equation (1) and
equation (2) can be obtained from the recurrence relation of equation (10) and equation (11).

3.1. Illustrative Example
In this section, three numerical examples are considered to be solved by IIM to reveal the
reliability and accuracy of the method.

Example 1
Given the NWS equation as follows

U (X, 1) = Sy (x, 1) + 2u(x, ) + u?(x, t) (12)

with initial condition

u(x,0) = A (13)
where the exact solution is
N 2e2t) (14)
utet) = oA = e

By using IIM, the equivalent integral equation of (4.1) is

‘ (15)
u=2 +f (SUyy + 2u + u?)dt
0

Thus, the first a few iterative solutions are,



Ug(x,t) =4
u (x,6) = A+ (A2 + 22t

1A+ (A2 +20)1)3 (16)
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By letting 4 = 12, the fifth iterative solution is:

(r0) — 124 110460 8455704 , 115611376 , 28364904
et = 2401 2401 2401 29
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- 5 8
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275 25
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5

In this study, we let t € [0,0.05] to execute the solution. The results have been plotted as presented
in Figure 1 in the Section five of this paper.
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t1% + 12371638616064t*
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Example 2
Next, we consider the linear NWS equation:
ut(x! t) = uxx(x; t) + Zu(x! t) - 3u2 (x! t) (18)

with initial condition
u(x,0) =21 (29)

where the exact solution is
2e?t) (20)

—2+3(1—e2)1

u(x,t) = —



In view of IIM, the equivalent integral equation of (4.7) is

: (21)
u=21+ f(uxx + 2u — 3u?)dt
0
Thus, the first a few iterative solutions are,
up(x,t) =21
u(x,t) = A+ (=322 4+ 2t
A+ (=322 +2D)1)3 (22)

Uy (x,t) = A+ 24t + (A% + 20t +

—3A2 424
1(A+ (=322 + 2)t)*
2 (=322 +21)?
3
=5 (2322 + 2)*7 + (=32° + 22 = 3A(=34% + 2)) (-34°

2
uz(x, t) = A1+ 21t + 2At% + 3 (=322 + 2t -

3
+21)2t6 — g(—Z(—3/12 +21)% + (=342 + 21
— 3A(—32% + 22))%t°

> 212 ~ 342 +21)2
4( =322+ 22 ( )

+2(=342 + 22)(—3A2 + 22 — 3A(—322 + 2,1))) ¢4

/13

— — _ 2 _ _ 2
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By letting 4 = 0.1, the sixth iterative solution is:

ug = 0.999999999993788 + 0.170000000018107¢ + 0.119000000033565t (23)

+ 0.0266333333583805t3 — 0.021033333283682t*
—0.0198163333405179t> — 0.00548907333544101¢°
+ 0.00614130504512453t” + 0.00313447955062534t8
—0.000415228058422366t° — 0.000874752934866484t°
—0.000188386366019455t! + 0.000144045878042441¢t12
+ 0.0000675763321449903t13
—0.0000103564139477513t*
—0.0000140708642079103t5 — 2.564993578 10~ 7¢16
+ 0.00000200797937450533t7 + 1.512932613 10~ 7¢!®
—2.099346146 1077t — 2.229781509 10~8¢2°
+ 1.953373900 1078t + 1.230349420 107°¢22
— 1.530674249 107%t23 + 8.173929604 10~ 11¢2*
+ 6.638546442 10711¢25 — 1.221463855 10~ 11¢26
—3.329735922 107 13¢27 4+ 3.419411739 10~ 13¢28
— 4.554252295 10714¢2° 4+ 2.703863174 10715¢3°
—6.354701471 107 7¢31

In this example, we let t € [0,0.1] to execute the solution. The results will be plotted in Figure 3.



Example 3
Consider the linear NWS equation:
ue(x, £) = Uy (x, ) — 3u?(x, t) (24)

subject to the initial condition:
u(x,0) = e?* (25)

where the exact solution is:
u(x, t) = e?*+t (26)

In view of IIM, the equivalent integral equation of (4.13) is
t

(27)
u=21+ f(uxx — 3u?)dt
0
Thus, the first a few iterative solutions are,
ug(x, t) = e?*
u;(x,t) = e?* + e?*t
1
uy(x, t) = e?* +e?*t + Eez"t2 (28)
1 1
uz(x, t) = e** + et + Eez"t2 + Eez"t3
Therefore, the u,(x, t) solution is given by
(x,t) = 2xl+t+t2+t3+t4+ @9
un(x,8) = e ( 2 "6 " 24

by using u(x, t) = lim u,(x,t) , leads to u(x, t) = e?**t , which is the exact solution of equation (24).
n—-oo

4. Results and Discussion

In this section we compare the fifth iteration of our result in the first example with the exact
solution, fourth iterative solution obtained using NIM by Patade and Bhalekar [8] and LADM by Pue-
On [5]. For the second example we compare the sixth iterative of our results with the exact solution,
fourth term solution NIM by Patade and Bhalekar [8], ADM by Saravanan and Magesh [9].

Figure 1 presents the comparison solution by 1IM, NIM, LADM and exact solution. The
value of u(x, t) of lIM which is close to the exact solution compared to NIM and LADM. The results
of this example show that the 1IM is more accurate than ADM and LADM.

Furthermore, the comparison of magnitude error between IIM, exact solution, NIM and
LADM have been depicted in Figure 2. Att = 0, the accuracy of these three methods is similar since
the magnitude of error is 0. As t increase the accuracy reduce significantly. However, the magnitude
errors of [IM are lower than NIM and LADM. Therefore, the IIM is proved to be more efficient and
more accurate.

Figure 3 show the results by 1IM, NIM, ADM and exact solution for example 2. At t =0 or
close to 0, all the methods are in good agreement with exact solution. However as t increase the
results by IIM is more accurate than NIM and ADM.

It also can be seen in Figure 4 where the magnitude of error by IIM is close enough to zero
compared to other methods. This indicates the efficiency and accuracy of IIM in solving NWS
equation.
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Figure 1. Comparison solution by 1IM, NIM, LADM and exact solution for A = 12
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5. Conclusion

In this work, 1IM has been applied successfully for solving 3 examples of NWS equations. In
the first example the obtained results are compared with those obtained by both NIM and LADM. On
the other hand, for the example 2, the results are compared with NIM and ADM. The comparisons of
the results by all the methods shows that IIM provide more accurate results than others. Meanwhile,
in example 3, it is apparently seen that 1IM is very efficient and powerful to get the exact solutions in
a rapid convergent form. From all examples, indicates the reliability, efficiency and accuracy of 1IM
when implemented to NWS equation. The performance and computer friendly solution procedure of
IIM proved that IIM is an excellent tool for system of differential equation.
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