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A unified method for solving general polynomial equation of degree less than five that incorporate 
a computational formula that relate the coefficients of the depressed equation and the coefficient of 
the standard polynomial equation is proposed in this study. This is to ensure that this method is 
valid for all degree less than five.  It shall apply the undetermined parameter method of auxiliary 
function to obtain solutions to these polynomial equations of degree less than five in one variable.  
In particular, the result of our work is a unification and improvement on the work of several authors 
in the sense that only applicable for the case of polynomial equation of degree one. Finally, our 
results improve and generalize the result by applying standard formula methods for solving higher 
degree polynomials. It is recommended that the effort should be made toward providing other 
variant methods that are simpler and friendly. 
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1.  Introduction  

Considering how important the solution to polynomial equations is in the field of sciences (i.e., 
Mathematics, Statistics and Physics) and social sciences (i.e., Economics and Business 
Administration) some researchers have developed a unify method of solution to those polynomial 
equations that are solvable by radicals. Kulkarni (2006), Kalman & White (2001), provide an 
interesting, unified approach, based on undetermined parameter method, circulant matrices method 
respectively, for solving polynomial equations of degree four or less. However, it is important to 
note that, ironically, the methods developed by this researcher is not valid for solving general 
polynomial equations of degree one. Indeed, literature indicates that solution to polynomial 
equations have been investigated for centuries. Linear and quadratic polynomial equations were 
solved in the fifteenth centuries while the cubic and quartic polynomial equations were 
comprehensively solved in the sixteenth centuries.  
 Cubic equation was known since the ancient times, even by the ancient Greeks and the 
ancient Babylonians and the ancient Egyptians. In the 11th century, the famous Mathematician 
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Omar Khayyam discovered a geometrical method to solve cubic equation which could be used to 
get numerical answer by intersecting a parabola with a circle, and by using this method he found 
cubic equation can have more than one solution. He could not find algebraic formula for the general, 
but he could only solve cubic equation geometrically, Conner (1956).  
 As in Conner (1956), Scipione del Ferro discovered a formula that solved the so called 
“depressed cubic”. Instead of publishing his solution, Del Ferro kept it a secret until his deathbed 
telling his student Antonio Fior. Niccolo Fotana also known as Tartaglia who solved many special 
cases of cubic equations and later reveals his techniques to Cardan. Girolamo Cardan was the one 
who gave a complete solution to the general cubic equation in his book, The Great Art, or the Rules 
of Algebra (Cardano, 1545). In that book the Ars magma, Cardano introduced the technique of 
substitution by Ludovico Ferrari that not only solved the cubic and quartic but became 
indispensable in polynomial algebra (Conner, 1956).  
 It may interest you to know that the first attempt to unify solutions to quadratic, cubic and 
quartic equations date at least to Lagrange (1869). Lagrange's analysis characterized the general 
solutions of the cubic and quartic cases in terms of permutations of the roots, laying a foundation 
for the independent demonstrations by Abel and Galois of the impossibility of solutions by radicals 
for general 5!" degree or higher equations. Since then, researcher have pitched their tent in 
providing several other alternative (analytic) methods for the solution of general polynomial 
equation of degree less than five has been proposed in the literature. However, any work done in 
line with the purpose of proffering a unified functional method for solving 𝑓#(𝑥) = 0 (𝑛 < 5) in 
radical were unaware.  
 Nickalls (2000) used differentiation to obtain −𝑏/𝑛𝑎 which he called the 𝑁-point of a 
polynomial, that is the point to which the axis must be moved to make the sum of the roots equal 
to zero. Futhermore, observe that what the 𝑁-point represents depends on the degree of the 
polynomial, in particular, 𝑁-point represents the root of a linear equation when 𝑛 = 1, the turning 
point of a quadratic equation when 𝑛 = 2, the point of inflection of a cubic equation when 𝑛 = 3 
etc. Das (2014) employed differential calculus method (𝑁-point property) which depend on 
cardano’s and Ferrari’s method to obtain solution to cubic and quartic polynomial equation. 
Tiruneh (2019, 2020) introduced the functional method of solution to quadratic, cubic respectively 
via certain transformations and differentiation. However, it is important to note that the case of 
functional method of solution to quartic equation is yet to be announce, this will be taken care of 
as a particular case in our unified functional method for solving 𝑓#(𝑥) = 0 (𝑛 < 5) in radical via 
certain auxiliary function.    
 Solving polynomial equation via reduction to depressed equation (that is polynomial 
equation without the second highest term) over the years has seemingly become a standard 
approach. Furthermore, the coefficient of this depressed equation plays a fundamental role in 
determining the solution of the standard polynomial equation. Now, the following depressed 
equations for each of the polynomials were recalled. 

Quadratic: 𝑦$ + 𝑝 = 0; 	𝑝 = −7%
!&'()
'(!

8                                                                                        
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where 𝑎, 𝑏. 𝑐, 𝑑 are the coefficients (constants) of the associated polynomial equations and 𝑝, 𝑞, 𝑟 
are coefficients (constants) of the corresponding depressed polynomial equations. 
 Probably, it is of interest to note that except for the quadratic equation, the coefficient 
(constant) terms in these depressed equations are not readily handy to remember during 
computation since the solution to their associated general polynomial equation depend on them 
(this coefficients). Hence, it is our interest in this research work to develop a novel formula that 
completely determine the coefficients of these depressed equations for a general polynomial 
equation of degree 𝑛 and then apply it to solve standard polynomial equation of degree less than 
five which were believed is yet to be announced in literature. Thus, the remaining part of this work 
is structured as follows: Section 2 is the methodology where it defines some concepts and proves 
the important theorems. Section 3 is the results of the polynomial, namely, linear, quadratic, cubic, 
and quartic and further explains the applications of the theorem. Finally, Section 4 concludes the 
paper by highlighting the future work that can be made to improve the research. 
 
2.      Methodology 

It is important to note that Kulkarni (2006) introduced unified method for solving general 
polynomial equations of degree less than five by seeking for the zero solution of the polynomial 
(auxiliary function) of degree 𝑛	(𝑛 < 5) given by 
 

𝑔(𝑥; 𝑏2, ⋯ 𝑏3&/, 𝑐2, , ⋯ 𝑐3&/, 𝑝) =
(𝑉3(𝑥))4 − 𝑝4(𝑊3(𝑥))4

1 − 𝑝4
 

 
 

 
where 𝑉3(𝑥) and 𝑉3(𝑥) are constituent polynomials of degree 𝑚, such that 𝑚 < 𝑛 and 𝑝 is 
unknown to be determined. The integer 𝑘 has to satisfy the relation 𝑘𝑚 = 𝑛 so that the auxiliary 
function will be of degree 𝑛. It is important to observe that in this method, when 𝑛 is even, the 
number of unknowns is one more than the number of equations, this is an issue to worry about. 
However, in such case, Kulkarni remarked on the needs to assign some convenient value to an extra 
(one) unknown for determining the unknowns by solving the n equations.  

This remain an issue since there is no lay down procedure for assigning this so-called 
convenient value to a particular unknown in the system of the equations. Furthermore, it is some 
worth ironical to observe that the auxiliary function constructed by Kulkarni is not applicable to 
∑ 𝑎#&5𝑥#&5#
562 = 0; 𝑎# ≠ 0; 𝑖𝑓	𝑛 = 1 which contradict the claim that it is valid for 𝑛 < 5, since 

𝑛 = 1 < 5 and this is easily seen from the equation that determine the number of unknown which 
is given by 

2𝑚 + 1 = H 𝑛							; 𝑓𝑜𝑟	𝑛	𝑜𝑑𝑑𝑛 + 1		; 𝑓𝑜𝑟	𝑛	𝑒𝑣𝑒𝑛  

  
This has no solution for 𝑛 = 1, since this implies that 𝑚 = 0, suggesting that the auxiliary function 
is a constant. This cannot be, thus a contradiction. Furthermore, observe that for every 𝑘 > 1, 𝑘𝑚 =
𝑛	𝑎𝑛𝑑	𝑛 = 1 implies that 1 = 𝑛 = 𝑘𝑚 = 𝑘(0) = 0	 ⟹⟸ again, a contradiction. In order to do 
away with this anomaly, an alternative approach to the auxiliary function (polynomial) constructed 
by Kulkarni shall be introduced. 
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 In this section, it is defined some important terms, definitions, lemmas, and theories as will 
be needed in the presentation of this research work. Let ℕ be the set of natural numbers and 𝐶 the 
set of real (or complex) numbers. Then for any given 𝑛 ∈ ℕ, a function 𝑓#: 𝐶 ⟶ 𝐶  is said to be a 
polynomial of degree 𝑛 if there exists a constant 𝑎5(𝑗 = 0	,1,2, … , 𝑛) such that 𝑓 is given by 

𝑓#(𝑥) = V𝑎4𝑥4
#

462

; 		𝑎# ≠ 0																		 (1) 

 

Equation (1) is said to be depressed if 𝑎#&/ = 0, monic if 𝑎# = 1 and the set of first 𝑛 positive 
integers is defined by 

[𝑛]: = {1,2,3,⋯ , 𝑛} (2) 
        

LEMMA 2.1  

Let 𝑓#(𝑥) be as in equation (1) and 𝛽# ∈ 𝐶, if 𝑥 = 𝛽# + 𝑦 then 

𝑓#(𝛽# + 𝑦) = V\V ]
𝑘 + 𝑗
𝑗 ^

#&4

562

𝑎475𝛽#
5_𝑦4

#

462

 
 

(3a) 

Proof: 

By hypothesis 

𝑓#(𝑥) = V𝑎4𝑥4
#

462

 

	⟹ 𝑓#(𝛽# + 𝑦) = V𝑎4(𝛽# + 𝑦)4
#

462

= V𝑎4 \V]
𝑘
𝑗^

4

562

𝛽#
4&5𝑦5_ =

#

462

 

𝑎2𝛽#
4 + 𝑎/\V]

1
𝑗^

/

562

𝛽#
/&5𝑦5_ + 𝑎$\V]

2
𝑗^

$

562

𝛽#
$&5𝑦5_ +⋯+ 𝑎# \V]

𝑛
𝑗^

#

562

𝛽#
#&5𝑦5_ 

After some algebraic simplification, the required result is obtained. This completes the proof. 

LEMMA 2.2  

Let 𝑓#(𝑥) be as in equation (1) and 𝛽# ∈ 𝐶, then there exist a functional 𝑓#
(4) 7+

$:%
+;$

= 𝑓#
(4)8 such 

that 

𝑓#
(4)(𝛽#) = 𝑘!V ]

𝑘 + 𝑗
𝑗 ^

#&4

562

𝑎475𝛽#
5	 

 
(3b) 

 
Proof: 
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Since 𝑓#(𝛽# + 𝑦) = ∑ 𝑝#,4𝑦4#
462 , where 𝑝#,4 = 7∑ 74755 8

#&4
562 𝑎475𝛽#

58 , 𝑝#,# = 𝑎#, Observe that 
𝑓#(𝛽# + 𝑦) is a polynomial of degree 𝑛 and hence its Taylor’s series expansion at the origin 
(Maclaurin’s) is given by 

𝑓#(𝛽# + 𝑦) = V
𝑓#
(4)(𝛽#)
𝑘!

𝑦4
#

462

	 
 

(3c) 

 

Using lemma 2.1, the required result is obtained. This completes the proof. 

LEMMA 2.3  

Let 𝑓#(𝑥) be as in equation (1) then there exists 𝛽# ∈ 𝐶, such that the transformation 𝑥 = 𝛽# + 𝑦 
implies that 

𝑎2 + 𝑎/𝑥 + 𝑎$𝑥$ +⋯+ 𝑎#&$𝑥#&$ + 𝑎#&/𝑥#&/ + 𝑎#𝑥# = 0 

take the form 

𝑝#,2 + 𝑝#,/𝑦 + 𝑝#,$𝑦$ +⋯+ 𝑝#,#&$𝑦#&$ + 𝑎#𝑦# = 0 

Proof: 

Recall; 𝑓#(𝑥) = 𝑓#(𝛽# + 𝑦) = 0. From lemma 2.1 observe that 

 𝑓#(𝛽# + 𝑦) = ∑ 𝑝#,4𝑦4#
462 , where 𝑝#,4 = ∑ 74755 8

#&4
562 𝑎475𝛽#

5  

Clearly, from definition 𝑝#,# = 𝑎#. Also the value of 𝛽# that will guarantee that the coefficient of 
𝑦#&/ vanishes implies that 

V]
𝑛 − 1 + 𝑗

𝑗 ^
/

562

𝑎#&/75𝛽#
5 = 0;	⟹			 𝑎#&/ + 𝑛𝑎#𝛽# = 0;	⟹		𝛽# = −

𝑎#&/
𝑛𝑎#

	 

This completes the proof. 

Remark 1: It is important to note that most standard proof for Lemma 2.3 readily apply the 
Newton’s power sums formula Adamchik & Jeffrey (2003), which is rather complicated when 
compared with the method of our proof.   

Now, combining equation (3b) and equation (3c), the depressed equation is obtained 

𝑓#(𝛽# + 𝑦) = V𝑓#
∗(4)(𝛽#)𝑦4

#

462

	 
 

(3d) 

where 𝑓#
∗(4)(𝛽#) = ∑ 74755 8

#&4
562 𝑎475𝛽#

5 is now considered as 𝑝#,4∗ = /
(%
∑ 74755 8
#&4
562 𝑎475𝛽#

5 .  

Then, an equivalent depressed monic polynomial is obtained 
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𝑓#(𝛽 + 𝑦) = V𝑝#,4∗ 𝑦4
#

462

	 
 

(4d) 

THEOREM 2.4 

Let 	𝑛,𝑚 ∈ ℕ and 𝑓#(𝑥) = 0 a polynomial equation of degree 𝑛	(𝑛 ≤ 4), then there exist 𝑢, 𝑣, 𝑤 
an undetermined parameter such that the zero solution to the auxiliary function solves the given 
polynomial equation 𝑓#(𝑥) = 0 

The above theorem for the case of linear, quadratic, cubic and quartic polynomial shall be proven 
in the Section 3. 
 

3. Results and Applications   

3.1 The Linear Case  

It is clear that when 𝑛 = 1, then 𝑓/(𝑥) = 𝑓/(𝛽/ + 𝑦) = 0 implies that ∑ 𝑝/,4∗ 𝑦4/
46/ = 0. It may 

simply write this as 𝑝/,/∗ 𝑦 = 0. 

Now, for 𝑛 = 1 there is at least one 𝑟/ ∈ [1] = {1} such that 𝑚𝑟/ = 1. Since {1} is a singleton set, 
it suffices to take 𝑟/ = 1, which implies that by equation (4c), 𝑚 = 1. Thus, by equation (4a), it 
produced 

𝑔(𝑦; 𝑢, 𝑣, 𝑤) = (𝑣𝑦 + 𝑤) − (𝑦 + 𝑢) 

Observe that          𝑔(𝑦; 𝑢, 𝑣, 𝑤) = 0;		 

                                   	⟹ (𝑣𝑦 + 𝑤) − (𝑦 + 𝑢) = 0  

⟹		 (𝑣 − 1)𝑦 + (𝑤 − 𝑢) = 0 (5) 

⟹ 		𝑦 =
−(𝑤 − 𝑢)
𝑣 − 1

	 (6) 

Is the seeking solution to the zero of the auxiliary function 𝑔(. ). 

The depressed equation 𝑝/,/∗ 𝑦 = 0 implies that 

𝑦 = 0	  (7) 
 

 

𝑔(𝑦; 𝑢, 𝑣, 𝑤) = (𝑣𝑦 + 𝑤)3 − (𝑦>% + 𝑢)3:	for	some	𝑟# ∈ [𝑛] 
 

(4a) 

𝑥 = 𝑦 + 𝛽# 
 

(4b) 

𝑚𝑟# = 𝑛 
 

(4c) 
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To determine the unknown parameters, for completeness of procedure, the equation (5) and 
equation (7) are compared to produce 

𝑣 − 1 = 1 

𝑤 − 𝑢 = 0	 ⟹ 𝑢 = 𝑤 

 Substituting these values into equation (6) producing 

𝑦 =
𝑢 − 𝑤
𝑣 − 1

= 0 

So that by equation (4b) and Lemma 2.3, it produced 

𝑥 = 𝛽/ = −
𝑎/
𝑎$

 

Which is a general solution to the linear equation. 
 

3.2 The Quadratic Case  

It is clear that when 𝑛 = 2, then 𝑓$(𝑥) = 𝑓$(𝛽$ + 𝑦) = 0 implies that ∑ 𝑝$,4∗ 𝑦4$
462
4?/

= 0. It may 

simply write this as  

𝑦$ + 𝑝$,2∗ = 0 (8) 
Now, for 𝑛 = 2 there is at least one 𝑟$ ∈ [2] = {1,2} such that 𝑚𝑟$ = 2. It suffices to take 𝑟$ = 2 
which implies that 𝑚 = 1. Thus, by equation (4a) produced 

𝑔(𝑦; 𝑢, 𝑣, 𝑤) = (𝑣𝑦 + 𝑤) − (𝑦$ + 𝑢) 

Observe that          𝑔(𝑦; 𝑢, 𝑣, 𝑤) = 0;		 

⟹	𝑦$ − 𝑣𝑦 + 𝑢 − 𝑤 = 0 (9) 

⟹ 	𝑦 =
𝑣 ± l𝑣$ − 4(𝑢 − 𝑤)

2
 (10) 

This is called as the seeking solution for the depressed quadratic equation.  

Now comparing the depressed quadratic equation (8) and equation (9) to determine the unknown 
parameters 𝑢, 𝑣 and 𝑤, it is obtained 

𝑣 = 0	𝑎𝑛𝑑	𝑢 − 𝑤 = 𝑝$,2∗ 	 (11) 
Substituting these values into equation (10) gives 

𝑦 = ±m−𝑝$,2∗  

So that by equation (4b) and Lemma 2.3 are producing 

= 𝛽$ ±m−𝑝$,2∗ =
−𝑎/ ± l𝑎/$ − 4𝑎2𝑎$

2𝑎$
		 (12) 

is a general solution to the quadratic equation. 
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3.3  The Cubic Case  

Also, observe that when 𝑛 = 3, then 𝑓*(𝑥) = 𝑓*(𝛽* + 𝑦) = 0 implies that ∑ 𝑝*,4∗ 𝑦4*
462
4?$

= 0. 

Hence, this is written as 

𝑝!,#∗ + 𝑝!,%∗ 𝑦 + 𝑦& = 0		 (13) 
Now, since 𝑛 = 3, there is at least one 𝑟* ∈ [3] = {1,2,3} such that 𝑚𝑟* = 3. It suffices to take 
𝑟* = 1 which implies that 𝑚 = 3. Thus, by equation (4a), it produced 

𝑔(𝑦; 𝑢, 𝑣, 𝑤) = (𝑣𝑦 + 𝑤)* − (𝑦 + 𝑢)* 

and     

                                   𝑔(𝑦; 𝑢, 𝑣, 𝑤) = 0; 

⟹			 (𝑣𝑦 + 𝑤)* − (𝑦 + 𝑢)* = 0		 (14) 
⟹	(𝑣𝑦 + 𝑤)* = (𝑦 + 𝑢)*; 	⟹ 	𝑣𝑦 + 𝑤 = 𝑦 + 𝑢;	⟹ 

𝑦 =
𝑢 − 𝑤
𝑣 − 1

		 (15) 

In order to solve equation (13), the equation (14) is expanded and obtained 

(𝑣! − 1)𝑦! + 3(𝑣&𝑤 − 𝑢)𝑦& + 3(𝑣𝑤& 	− 𝑢&)𝑦 + 𝑤! − 𝑢! = 0		 (16) 
Now, comparing the coefficients in the two equations (16) and (13), it is obtained 

𝑣* − 1 = 1 (17a) 
𝑣$𝑤 − 𝑢 = 0		 (17b) 

𝑣𝑤$ − 𝑢$ =
𝑝*,/∗

3
	 (17c) 

𝑤* − 𝑢* = 𝑝*,2∗ 			 (17d) 
 

In equation (17b), it follows that 𝑢 = 	𝑣$𝑤. Substituting into (17𝑐), (17𝑑) and using (17𝑎) 
producing 

𝑣𝑤$ = −
𝑝*,/∗

3
		 (18) 

(𝑣* + 1)𝑤* = −𝑝*,2∗ 			 (19) 

From equation (17c) = − @",'∗

*A! , substituting this into equation (17d) and taking 𝑡 = 𝑤*, it produced 

27𝑡$ + 27𝑝*,2∗ 𝑡 − 𝑝*,/∗
* = 0		 (20) 

is a quadratic equation in 𝑡 whose solution is 

𝑡5 = −p
𝑝*,2∗

2
q + (−1)5rp

𝑝*,2∗

2
q
$

+ p
𝑝*,/∗

3
q
*

; 𝑗 = 1,2			 (21) 
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It follows that 

𝑤5 = s−p
𝑝*,2∗

2
q + (−1)5rp

𝑝*,2∗

2
q
$

+ p
𝑝*,/∗

3
q
*"

; 𝑗 = 1,2			 
 

(22) 

From the equations: (15), (17a) and (17b), the 𝑦 = B&A
C&/

, 𝑣 = − @",'∗

*A! and 𝑢 = 𝑣$𝑤 are produced 

which implies that 𝑦 = 7𝑤 − @",'∗

*
𝑤&/8. Thus, altogether, it becomes 

𝑦/5 = \−p
𝑝*,2∗

2
q + (−1)5rp

𝑝*,2∗

2
q
$

+ p
𝑝*,/∗

3
q
*

_

/
*

 

−
𝑝*,/∗

3 \−p
𝑝*,2∗

2
q + (−1)5rp

𝑝*,2∗

2
q
$

+ p
𝑝*,/∗

3
q
*

_

&/*

; 			𝑗 = 1,2 

			 

(23) 

Simply put for every 𝑗 = 1, 2 

𝑦/5 = V 𝑅3

/

362

:		𝑅3 = p−
𝑝*,/∗

3
q
3

\−
𝑝*,2∗

2
+ (−1)5rp

𝑝*,2∗

2
q
$

+ p
𝑝*,/∗

3
q
*

_

/
*(&/)

)

 

Is a solution to equation (16). So that by equation (4b) it follows that for each 𝑦/5 	(𝑗 = 1,2)  

𝑥/5 = V 𝑅3

/

362

+	𝛽*				; 𝑗 = 1,2				 (24) 

is a solution to the cubic equation. However, for each 𝑗	(𝑗 = 1,2), 𝑥/5 is one of the three roots and 
the remaining roots 𝑥$5 , 𝑥*5 can be found by employing Vieta identity formula for relationship 
between roots given by: 

                        𝑦/5 + 𝑦$5 + 𝑦*5 = 0, 𝑦/5𝑦$5 + 𝑦$5𝑦*5 + 𝑦*5𝑦/5 = 𝑝*,/∗         

From these, every fixed 𝑗 a quadratic equation is obtained whose solution gives 

𝑦D5 = 7
−𝑦/5
2
8 + (−1)Dr−]

3
4^
𝑦/5$ − 𝑝*,/∗ ; 𝑖 = 2,3				 (25) 

Equation (4b) and lemma 2.3 completely define the solution of the general cubic equation. Hence, 
for each fixed 𝑗	(𝑗 = 1,2), it obtained 𝑥D5 	(𝑖 = 1,2,3). Thus, it is shown that ∀	𝑗	 ∈ {1, 2}, there exist 
𝑦D5 (solution to equation (16)) such that by equation (4b) and Lemma 2.3 producing  

		𝑥D5 = 𝑦D5 + 𝛽*	; 𝑖 = 1,2,3 

is a solution to the general cubic equation. 
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3.4  The Quartic Case   

It is clear that when 𝑛 = 4, then  𝑓'(𝑥) = 𝑓'(𝛽' + 𝑦) = 0 implies that ∑ 𝑝',4∗ 𝑦4'
462
4?*

= 0. It is simply 

written as 

𝑝',2∗ + 𝑝',/∗ 𝑦 + 𝑝',$∗ 𝑦$ + 𝑦' = 0		 (26) 
For 𝑛 = 4, there is at least one 𝑟' ∈ [4] = {1,2,3,4} such that 𝑚𝑟' = 4. It suffices to take 𝑟' = 2 
which implies that 𝑚 = 2. So that 

𝑔(𝑦; 𝑢, 𝑣, 𝑤) = (𝑣𝑦 + 𝑤)$ − (𝑦$ + 𝑢)$		 

In order to solve equation (27), first it considers the solution to 

                 𝑔(𝑦; 𝑢, 𝑣, 𝑤) = 0;		 

⟹	(𝑣𝑦 + 𝑤)$ − (𝑦$ + 𝑢)$ = 0 (27) 
⟹	(𝑦$ + 𝑢)$ = (𝑣𝑦 + 𝑤)$; 	⟹ 𝑦$ + 𝑢 = ±(	𝑣𝑦 + 𝑤); 

                  ⟹		𝑦$ + 𝑢 = (	𝑣𝑦 + 𝑤) or 𝑦$ + 𝑢 = −(	𝑣𝑦 + 𝑤); 

                    ⟹		𝑦$ − 𝑣𝑦 + (𝑢 − 𝑤) = 0  or  𝑦$ + 𝑣𝑦 + (𝑢 + 𝑤) = 0; 

⟹		𝑦/ =
𝑣 − l𝑣$ − 4(𝑢 − 𝑤)

2
	𝑜𝑟	𝑦$ =

𝑣 +l𝑣$ − 4(𝑢 − 𝑤)
2

	 (28) 

⟹		𝑦* =
−𝑣 −l𝑣$ − 4(𝑢 + 𝑤)

2
		𝑜𝑟		𝑦' =

−𝑣 + l𝑣$ − 4(𝑢 + 𝑤)
2

	 (29) 

Constitute the seeking solution to the quartic equation (26). Now expanding equation (27), it 
obtained 

𝑦' + (2𝑢 − 𝑣$)𝑦$ − 2𝑤𝑣𝑦 + 𝑢$ −𝑤$ = 0	 (30) 
Now, comparing the coefficients in the two equations (27) and (30) producing 

𝑝',$∗ = (2𝑢 − 𝑣$) ⇒ 𝑢 =
𝑝',$∗ + 𝑣$

2
	 (31) 

𝑝',/∗ = −2𝑤𝑣	;	⇒ 𝑤 =
−𝑝',/∗

2𝑣
	 (32) 

𝑝',2∗ = (𝑢$ −𝑤$)	; 	⟹	𝑝',2∗ = p
𝑝',$∗ + 𝑣$

2
q
$

− p
−𝑝',/∗

2𝑣
q
$

	 (33) 

The equation (33) is expanded to have  

𝑣0 + 2𝑝',$∗ 𝑣' + w𝑝',$∗
$ − 4𝑝',2∗ x𝑣$ − 𝑝',/∗

$ = 0	 (34) 
Which is the resolvent equation associated with the quartic equation. 

Let 

𝑣$ = 𝑧	 (35) 
Then, by substituting into equation (34), it produced 

𝑧* + 2𝑝',$∗ 𝑧$ + w𝑝',$∗
$ − 4𝑝',2∗ x𝑧 − 𝑝',/∗

$ = 0 
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Thus, using any standard method for solving cubic equation it obtained at least one solution in 𝑧, 
consequently 𝑣 using the relating equation (35). 

Now, recall from the equations (31) and (32) that 𝑢 = @#,!∗ 7C!

$
 and 𝑤 = &@#,'∗

$C
 which implies that 

𝑢 + 𝑤 =
𝑣w𝑝',$∗ + 𝑣$x − 𝑝',/∗

2𝑣
	𝑎𝑛𝑑	𝑢 − 𝑤 =

𝑣w𝑝',$∗ + 𝑣$x + 𝑝',/∗

2𝑣
	 

Then the above seeking solution to equation (26) becomes 

                𝑦/ =
C
$
− mC

!

'
− CE@#,!∗ 7C!F7@#,'∗

$C
		𝑜𝑟		𝑦$ =

C
$
+ mC

!

'
− CE@#,!∗ 7C!F7@#,'∗

$C
           

         𝑦* = − C
$
−mC!

'
− CE@#,!∗ 7C!F&@#,'∗

$C
			𝑜𝑟		𝑦' = − C

$
+mC

!

'
− CE@#,!∗ 7C!F&@#,'∗

$C
  

Consequently, the solution to the general quartic becomes 

         𝑥/ =
C
$
−mC

!

'
− CE@#,!∗ 7C!F7@#,'∗

$C
+ 𝛽'		𝑜𝑟		𝑥$ =

C
$
+mC

!

'
− CE@#,!∗ 7C!F7@#,'∗

$C
+ 𝛽'           

         𝑥* = − C
$
−mC

!

'
− CE@#,!∗ 7C!F&@#,'∗

$C
+ 𝛽'			𝑜𝑟		𝑥' = − C

$
+mC

!

'
− CE@#,!∗ 7C!F&@#,'∗

$C
+ 𝛽' 

Alternatively, this can be simply put as 

𝑥4,5 =
(−1)4𝑣$ + (−1)5m𝑣' − 2𝑣w𝑣w𝑣$ + 𝑝',$∗ x + (−1)4𝑝',/∗ x

2𝑣
−
𝑎*
4𝑎'

; 𝑘, 𝑗 = 1,2	 (36) 

 

It now remains to demonstration with telling examples the validity of our results for solving 
𝑓#(𝑥) = 0 for 𝑛 ∈ 𝑁 such that 𝑛 < 5. Clearly for 𝑛 = 1 and 𝑛 = 2 is quite trivial, thus it shall 
justify the results for the cases 𝑛 = 3 and 𝑛 = 4. 
 

3.5 Applications 

It now remains to apply and demonstration with telling examples the validity of the results for 
solving 𝑓#(𝑥) = 0 for every 𝑛 ∈ 𝑁 such that 𝑛 < 5. Clearly for 𝑛 = 1 and 𝑛 = 2 is quite trivial, 
hence the examples that follows justifies our results for the cases 𝑛 = 3 and 𝑛 = 4. 

Example 1: Find the value of 𝑥 given that:  𝑥* − 𝑥$ − 5𝑥 − 3 = 0. 

Solution 

Using equation (23), 

𝑦/5 = \−
𝑝*,2∗

2
+ (−1)5rp

𝑝*,2∗

2
q
$

+ p
𝑝*,/∗

3
q
*

_

/
*

−
𝑝*,/∗

3 \−
𝑝*,2∗

2
+ (−1)5rp

𝑝*,2∗

2
q
$

+ p
𝑝*,/∗

3
q
*

_

&/*
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where  𝑝#,4∗ = ∑ (&/)*

(%
74755 8

#&4
562 𝑎475 7

(%+'
#(%

8
5
; 𝑎* = 1, 𝑎$ = −1, 𝑎/ = −5, 𝑎2 = −3  

Then, 

𝑝*,/∗ = ∑ (&/)*

("
7/755 8

*&/
562 𝑎/75 7

(!
*("
8
5
= /

/
∑ 7/755 8
$
562 𝑎/75 7

&/
*×/

8
5
= &/0

*
  

𝑝*,2∗ = ∑ (&/)*

("
72755 8

*&2
562 𝑎/75 7

(!
*("
8
5
= /

/
∑ 𝑎/75 7

&/
*×/

8
5*

562 = &/$-
$,

  

𝑦/5 = z
&H+'!,!- I

$
+ (−1)5r

H+'!,!- I
!

'
+

H+'." I
"

$, {

'
"

−
H+'." I

* z
&H+'!,!- I

$
+ (−1)5r

H+'!,!- I
!

'
+

H+'." I
"

$, {

&'"

	  

= p/$-
1'
+ (−1)5m/0*-'

$J/0
− '2J0

,$J
q

'
"
+ 7/0

J
8 p/$-

1'
+ (−1)5m/0*-'

$J/0
− '2J0

,$J
q
&'"

  

= p/$-
1'
+ (−1)5m/0*-'&/0*-'

$J/0
q

'
"
+ 7/0

J
8 p/$-

1'
+ (−1)5m/0*-'&/0*-'

$J/0
q
&'"
= -

*
	(𝑡𝑤𝑖𝑐𝑒)	  

Thus,  

 𝑥/5 = 𝑦/5 −
(!
*("

= -
*
− &/

*×/
= 3 

the remaining roots 𝑥$5 , 𝑥*5 can be found by employing 

                            𝑦45 = 7&K'*
$
8 + (−1)4m−7*

'
8 𝑦/5$ −	𝑝*,/∗ 	; 		𝑘 = 2,3  

= p
&,"
$
q + (−1)4m−7*

'
8 7-

*
8
$
− &/0

*
	= p

&,"
$
q + (−1)4m− /0

*
+ /0

*
=	− '

*
	(𝑡𝑤𝑖𝑐𝑒)  

Hence 

𝑥45 = 𝑦45 −
𝑎$
3𝑎*

= −
4
3
−

−1
3 × 1

= −1	(𝑡𝑤𝑖𝑐𝑒) 

                            ⟹	∀	𝑗 = 1,2	; 	𝑥45 = 3,−1,−1		; 𝑘 = 1,2,3 respectively. 

 

Example 2:  Find the roots of 

𝑥' + 4𝑥* + 33𝑥$ + (58 − 14𝑖)𝑥 + (148 − 14𝑖) = 0 

Solution  

Using equation (36) 
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𝑥4,5 =
(&/)$C!7(&/)*LC#&$CECEC!7@#,!∗ F7(&/)$@#,'∗ F

$C
− ("

'(#
; 𝑘 = 1, 2; 	𝑗 = 		1,2  

and the associated resolvent cubic equation 

𝑧* + 2𝑝',$∗ 𝑧$ + w𝑝',$∗
$ − 4𝑝',2∗ x𝑧 − 𝑝',/∗

$ = 0 ∶ 	 𝑣$ = 𝑧	 

where  𝑝#,4∗ = ∑ (&/)*

(%
74755 8

#&4
562 𝑎475 7

(%+'
#(%

8
5
;  

𝑎' = 1, 𝑎* = 4, 𝑎$ = 33, 𝑎/ = (58 − 14𝑖), 𝑎2 = (148 − 14𝑖) 

Then, 

𝑝𝑠𝑠',$∗ = ∑ (&/)*

(#
7$755 8

'&$
562 𝑎$75(𝛽')5 = ∑ (&/)*

/
7$755 8

$
562 𝑎$75 7

'
'×/

8
5
= 27  

𝑝',/∗ = ∑ (&/)*

(#
7/755 8

'&/
562 𝑎/75(𝛽')5 = ∑ (&/)*

/
7/755 8

*
562 𝑎/75 7

'
'×/

8
5
= −14𝑖  

𝑝',2∗ = ∑ (&/)*

(#
72755 8

'&2
562 𝑎275(𝛽')5 = ∑ (&/)*

/
'
562 𝑎5 7

'
'×/

8
5
= 120  

Thus 

𝑥4,5 =
(−1)4𝑣$ + (−1)5l𝑣' − 2𝑣(𝑣(𝑣$ + 27) − (−1)414𝑖)

2𝑣
−

4
4 × 1

; 𝑘 = 1, 2; 	𝑗 = 		1,2 

To solve for 𝑣, the resolvent cubic equation is used; that is 

𝑧* + 2𝑝',$∗ 𝑧$ + w𝑝',$∗
$ − 4𝑝',2∗ x𝑧 − 𝑝',/∗

$ = 0 ∶ 	 𝑣$ = 𝑧 

where 𝑝',$∗ = 27, 𝑝',/∗ = −14𝑖, 𝑝',2∗ = 120 substitute this value producing 

𝑧* + 54𝑧$ + 249𝑧 + 196 = 0 

Now, on re-applying the method of example 1 above to obtain the first root of the resolvent cubic 
equation, hence 𝑧 = −1 is one of such roots. Since 𝑣$ = 𝑧 ⇒ 𝑣 = ±𝑖. 

Using 𝑣 = 𝑖, it can be seen that 

𝑥4,5 =
(−1)4𝑖$ + (−1)5l𝑖' − 2𝑖(𝑖(𝑖$ + 27) − (−1)414𝑖)

2𝑖
− 1; 𝑘 = 1, 2; 	𝑗 = 		1,2 

 Hence the roots are 		𝑥4,5 = −1 + 3𝑖, −1 − 2𝑖, −1 + 4𝑖, −1 − 5𝑖		; 𝑘 = 1, 2; 	𝑗 = 		1,2 

Note that if 𝑣 = −𝑖 is used, the same values for the roots 𝑥4,5 	(𝑘 = 1, 2; 	𝑗 = 		1,2) above is 
obtained. 
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4.  Conclusion 

In this study, a function in terms of combinatorial coefficient that compute the coefficients of 
depressed polynomial equations and then apply the same to obtain solution to a polynomial 
equation of degree less than five in one variable is derived. In particular, the result of the work is a 
unification and improvement from previous authors which are only applicable for the case of 
polynomial equation of degree one. Furthermore, the results of this study improve and generalize 
the result recently announced by Tiruneh (2019, 2020). For further research, it is recommended 
that the effort should be made toward providing other variant methods that are simpler and friendly.  
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