UNIVERSITI TEKNOLOGI MARA

SEISMIC PERFORMANCE OF BEAM-COLUMN JOINTS WITH FUSE BARS UNDER IN-PLANE LATERAL CYCLIC LOADING

NURFARHANA DIYANA BINTI ABDUL HADI

PhD

October 2021

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree of qualification.

I hereby acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nurfarhana Diyana Binti Abdul Hadi
Student ID No	:	2013845868
Program	:	Doctor of Philosophy (Civil Engineering) – EC950
Faculty	:	College of Engineering
Thesis Title	:	Seismic Performance of Beam-Column Joints with Fuse Bars Under In-Plane Lateral Cyclic Loading
Signature of Student		A for.
Date	:	October 2021

ABSTRACT

The 2015 Ranau earthquake caused severe damage to the RC beam-column joint of school buildings in the Kundasang region, resulting in a soft-story mechanism. These buildings were designed and constructed using British Standard (BS8110), a nonseismic code of practice. As a solution for this problem, this study assesses the seismic performance of beam-column joints with fuse bars designed using Eurocode 8 and without fuse bars designed using BS8110 for a two-story RC school building prototype. The fuse bars were designed using the Pushover Analysis and incorporated in the seismic beam-column joints as passive energy dissipators to enhance the energy dissipation capacity of the beam-column joints. Three super-assemblages, corner beamcolumn joint, interior beam-column joint, and exterior beam-column joint with fuse bars, were designed, constructed, and tested under in-plane lateral cyclic loading. The seismic response comparisons between beam-column joints with and without fuse bars were made to establish the effectiveness of fuse bars as energy dissipators in beamcolumn joints. Subsequently, the global structural response of the two-story RC school building was assessed under eight past earthquake records using the Ruaumoko 2D and Dynaplot Program. The seismic vulnerability and deformation capacity of each joint under moderate and significant earthquake records and DBE and MCE for Malaysia were assessed. The results show that beam-column joints with fuse bars have Ductility Class Medium (DCM). The beam-column joints with fuse bars also have higher stiffness and lateral strength capacity. The effectiveness of the additional damping provided by the fuse bars is adequate in resisting earthquake load with 0.12g PGA and lower. But it is still not sufficient to decrease lateral displacement of the beam-column joints when subjected to 0.214g PGA and above. All three beam-column joints can also sustain under DBE and MCE for Type 1 and Type 2 earthquakes. The findings show that the beam-column joints with fuse bars can withstand the highest recorded earthquake in Malaysia, the 2015 Ranau earthquake with 6.0 magnitude and a peak ground acceleration of 0.12g.

ACKNOWLEDGEMENT

In The Name of Allah, The Most Beneficent and The Most Merciful. Thank you, Allah, for giving me the chances, blessings, and strength to complete my Ph.D. work and this thesis. A special thank you goes to Universiti Teknologi MARA (UiTM) and the Ministry of Higher Education and MOSTI for funding and supporting the research work.

I wish to express my deep gratitude to my supervisor, Associate Professor Dr. Nor Hayati Abdul Hamid@Zulkurnail, for giving me this opportunity. Also, I thank her for the guidance, direction, and encouragement throughout this research. I appreciate her time and commitment from the start until the end of my journey. Not forgotten, my sincere appreciation to my co-supervisors, Associate Professor Dr. Kay Dora Abdul Ghani and Associate Professor Dr. Norliyati Mohd Amin, for their support and assistance that have contributed to the success of this research work. I also want to express my gratitude to the technicians of Heavy Structures Laboratory of Faculty of Civil Engineering, UiTM Shah Alam, for their great commitment to this research work. Also, thanks to the Faculty of Civil Engineering office staff, UiTM Shah Alam, for their co-operation. Special thanks go to all seniors and friends, which without their help, would take a longer time to complete.

Last but not least, my heartfelt appreciation and very special thanks to my mother and father for love in their prayers and for believing in me in pursuing this study. Very special thanks to my husband for being an understanding and supportive partner throughout this journey. To my son, thank you for being my cheerleader and my go-to entertainment. Everything I do, I do it for all of them. Finally, thanks to all family members and to those who indirectly contributed in this research work. Your cooperation and prayers mean a lot to me. Thank you very much.

TABLE OF CONTENTS

CON	ii	
AUT	iii	
ABS	iv	
ACKNOWLEDGEMENT TABLE OF CONTENTS		
LIST OF FIGURES		
LIST OF SYMBOLS		
LIST	COF ABBREVIATIONS	xxviii
CHA	PTER ONE INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	7
1.3	Objective Of the Study	10
1.4	Scope of Work	10
1.5	Significance of Study	11
1.6	Thesis Outline	12
СНА	APTER TWO LITERATURE REVIEW	13
2.1	Introduction	13
2.2	Earthquake Histories in Malaysia	16
2.3	Structural Damages Due to Non-seismic Design in Malaysia	19
2.4	Soft-Storey Mechanism	24
2.5	Previous Research on Beam-Column Joint	26
2.6	Fuse Bars as Passive Energy Dissipator	33
2.7	Direct Displacement Based Design (DDBD)	43
2.8	Theoretical Background for Hysteresis Loops	54
2.9	Gap of Research	67