FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA

PASIR GUDANG

FINAL REPORT: METAL DETECTOR

MOHAMMAD TAUFIK SHAHADAN BIN SOOBRI

2012414276

AMINUDDIN BIN IDHAM HALID

2012836144

SUPERVISOR: CIK SITI SUFIAH BT ABD WAHID

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to all those who provided me the possibility to complete this report. A special gratitude I give to our Final Year Project (FYP) supervisor, Miss Siti Sufiah bt. Abd Wahid, for giving us a good guideline for this Final Year Project throughout numerous consultations. We would also like to expand our deepest gratitude to all those who have directly and indirectly guided us in making this Final Year Project.

Many people, especially our classmates and team members itself, have made valuable comment and suggestions on this project which give us an inspiration to improve our project. I have to appreciate the guidance given by other supervisor as well as the panels especially in our project presentation that has improved our presentation skills thanks to their comment and advices.

ABSTRACT

The purpose of performing Final Year Project 2 is to fulfil the course requirement of the Diploma Of Electrical Power Engineering at Uitm Kampus Pasir Gudang. The students need to nurture the experiences, knowledge and skills during finishing the project. It is as the first step before for the students to enter the real working environment. Metal detector is one of the project for final year project. Metal detector is an interesting device to detect metal nearby. It can be used as someone hobby or for the security screening. In security viewpoints, metal detector is an fundamental gear. At the same time, the metal detector, which is accessible in the business sector today, is expensive. Consequently this stands as an issue for specialists and for little applications. Consequently we have taken a try to draw out a metal detector of least cost.

LIST OF FIGURES

Figure 1 : Design Flow Chart 4
Figure 2 : Block Diagram of Metal detector 5
Figure 3 : Flow Chart of Simulation 6
Figure 4 : PIC16F877A 8
Figure 5 : IC 78 (Voltage Regulator)
Figure 6 : Light Emitting Diode (LED)
Figure 7 : Buzzer
Figure 8 : Resistor 10
Figure 9 : Capacitor 10
Figure 10 : Transistor 11
Figure 11 : Terminal Block 12
Figure 12 : Proximity Sensor 13
Figure 13 : Vero Board 14
Figure 14 : Solder Alloy 15
Figure 15 : Solder Iron 15
Figure 16 : Solder Sucker
Figure 17 : Schematic Diagram of Metal Detector17
Figure 18 : Components on Breadboard 19
Figure 19 : Vero Board
Figure 20 : Steps to Solder Components on Vero Board
Figure 21 : Good Soldering Condition 22
Figure 22 : Bad Soldering Condition 22

Figure 23 : Front of Vero Board	23
Figure 24 : Back of Vero Board	.23
Figure 25 : Schematic Circuit in Proteus	.24
Figure 26 : Proteus Simulation Result Test	25
Figure 27 : Micro C Simulation Result	26
Figure 28 : When Sensor Detect Non-Metal Object at Range of 2 c.m	27
Figure 29 : Sensor Being Placed at Range of 5cm from Non-Metal Object	28
Figure 30: Sensor Being Placed at Range Below 2cm from Metal Object	.29
Figure 31 : Sensor Being Placed at Range of 5cm from Metal Object	30