

PROGRAMABLE AC POWER CONTROL

MUHAMMAD AMIRUL IDHAM BIN LAILI MEGAT AMIR HANAFI BIN MEGAT TAFTAZANI

TK 3141 .M84 2015

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA

MARCH 2015

TABLE OF CONTENTS

CKNOWLEDGEMENTS	1
ECLARATION OF ORIGINAL WORK	2
BSTRACT	3
IST OF FIGURES	4
IST OF TABLES	5
IST OF ABBREVIATION	6
INTRODUCTION	
1.1. Background of Study	7
1.2. Problem Statement	11
1.3. Objectives	11
1.4. Scope of Study	12
MATERIALS AND METHODS	
2.1. Methodology	13
2.2. Experimental Setup	14
2.3. Equipment and Component	15
CIRCUIT DESIGN AND OPERATIONS	
3.1. Schematic Diagram	26
3.2. Circuit Operations	26
3.3. PCB Design	35
RESULT AND DISCUSSION	
4.1. Software Simulation Result	37
4.2. Hardware Implementation Result	38
4.3. Circuit Testing and Troubleshooting	40
4.4. Data Analysis and Discussions	41
CONCLUSION AND RECOMMENDATION	
5.1. Conclusion	43
5.2. Recommendation and Suggestion	44
EFERENCES	45
PPENDICES	46

ACKNOWLEDGEMENT

First and foremost, we would like to offer my honest gratitude to our supervisor Dr. Muhammad Asraf Bin Hairuddin for his guidance and constant supervision as well as for providing necessary information regarding the project and also for his support in completing the project.

We would like to express my gratitude towards my parents and our member for their kind co-operation and encouragement which help us in completion of this project.

Our thanks and appreciations also go to my colleague in developing the project and people who have willingly helped us out with their abilities.

ABSTRACT

The project is designed to see the effect of the firing angle of the transistor to the load power. Based on the principle of firing angle control of thyristors, one can control the ac power. A display unit displays the full power or any percentage and one can enter the desired percentage to reduce the power to the load.

The firing angle would be automatically adjusted to maintain the load power. The project uses a lamp such that the entered power matches the required one.

LIST OF FIGURES

Figure 1.1: Embedded System Design Calls	8
Figure 1.2 :"V Diagram"	9
Figure 2.1 : System Flowchart	13
Figure 2.2 : Block Diagram	14
Figure 2.3: Voltage Regulator Internal Block Diagram	16
Figure 2.4 : Block Diagram of AT89S52	18
Figure 2.5: Keypad	20
<i>Figure 2.6</i> : LM 358	22
Figure 2.7: Optoisolator Description	23
Figure 2.8: SCR	25
Figure 3.1: Schematic Diagram	26
Figure 3.2: Comparator	28
Figure 3.3: Optocoupler	29
Figure 3.4: Triac	30
Figure 3.5: Zero-Voltage Sensing Circuit	32
Figure 3.6: Zero-Voltage Waveform	32
Figure 4.1: Simulation Result	37
Figure 4.2: The lamp glows at full intensity.	38
<i>Figure 4.3</i> : The lamp is glow at 40% after the input is inserted. Input = 40%.	39