STUDY ON THE EFFECT OF YEAST CONCENTRATION AND FERMENTATION TIME ON BIOETHANOL PRODUCTION FROM Eucheuma denticulatum (N.L.Burman) F.S Collins & Hervey

HAZIRATUL MARDHIAR BINTI HAMDAN

BACHELOR OF SCIENCE (Mons.) BIOLOGY FACULTY OF APPLIED SCIENCES UNIVERSITE TEKNOLOGI MARA

JUNE 2014

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLE	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	xi
ABSTRAK	xii

CHAPTER 1: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Significance of the Study	5
1.4	Objectives of the Study	5

CHAPTER 2: LITERATURE REVIEW

2.1	Biofue	el Production from Biomass		
2.2	Seawe	Seaweed as Raw Material for Bioethanol Production		
	2.2.1	Echeuma denticulatum (N.L.Burman) F.S.Collins &		
		Hervey	8	
2.3	Sustain	ability of Seaweed-based Third Generation Bioethanol		
	(TGB)		9	
	2.3.1	Production of TGB in Sabah	10	
2.4	Bioeth	anol Production Method	11	
	2.4.1	Seaweed sample preparation	12	
	2.4.2	Acid hydrolysis	12	
	2.4.3	Reducing sugar determination and analysis	14	
	2.4.4	Fermentation	15	
		a. Fermentation by Saccharomyces cerevisiae	15	
		b. Fermentation time	16	
2.5	Statist	ical Analysis	17	
	2.5.1	Analysis of variance (ANOVA)	17	
	2.5.2	Multiple comparison test, Tukey Test	17	

CHAPTER 3: METHODOLOGY

3.1	Materials		19
	3.1.1	Raw materials	19
	3.1.2	Chemicals	19

3.1.3	Apparatus	19
Methods		20
3.2.1	Collection and preparation of seaweed	21
3.2.2	Gel preparation	21
3.2.3	Acid hydrolysis	21
3.2.4	Fermentation	22
3.2.5	Experimental design	22
Data A	Analysis	23
Limita	ations of Study	23
	Metho 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Data	

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Effectiveness of Different Yeast Concentration on Alcohol		
	Content Produced	24	
4.2	Difference of Varying Fermentation Time on Alcohol Content		
	Produced	29	

CHAPTER 5: CONCLUSION AND RECOMMANDATIONS

5.1	Effectiveness of Different Yeast Concentration on Alcohol	
	Content Produced	33
5.2	The Difference Made by Varying Fermentation Time on the	
	Bioethanol Yield	33
5.3	Recommendations	34

CITED REFERENCES	35
APPENDICES	39
CURRICULUM VITAE	50

ABSTRACT

STUDY ON THE EFFECT OF YEAST CONCENTRATION AND FERMENTATION TIME ON BIOETHANOL PRODUCTION FROM Eucheuma denticulatum (N.L.Burman) F.S.Collins & Hervey

This study aims to study the effectiveness of different yeast concentration and different fermentation time on the bioethanol production yield from the red seaweed, *Eucheuma denticulatum* (N.L.Burman) F.S.Collins & Hervey. By conducting a standardized, low concentration and high temperature acid hydrolysis on the seaweed upon the fermentation stage, findings showed that a minimum of yeast concentration of 20 wt% is needed to produce any alcohol while the minimum amount of fermentation time is 72 hours. Higher yeast concentrations and longer fermentation time would increase the ethanol yield, yet a yeast concentration above 30 wt% and fermentation time extending beyond 120 hours would result in an inefficient and unproductive bioethanol production.

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The world lives on fuel supply for its growth of population and its' desire for a higher standard of living. With the energy demand rising exponentially to 44,268 kilo tonnes in 2007 with the soaring surge of population (Leahy *et al.*, 2013), so a variety of alternative and renewable energy sources are studied.

Among the latest four renewable energy alternatives which are hydrogen, natural gas and syngas, biofuel pose as the most sustainable, effective and environment-friendly source as of yet. Consequently, the field of biofuel is continuously studied and developed in order to improve its sustainability and reliability as a source of energy.

One of the many raw materials used for harvesting this type of biomass energy, is seaweed. Bioethanol can be fermented from all kinds of seaweed by