SYNTHESIS AND CHARACTERIZATION OF STRONTIUM AND ZINC CONTAINING SOL GEL DERIVED BIOACTIVE GLASS

NUR AQILAH BINTI KAMARUZAMAN

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JULY 2014

TABLE OF CONTENTS

iv

ACKNOWLEDGEMENTSiiiTABLE OF CONTENTSivLIST OF TABLESviLIST OF FIGURESviiLIST OF ABBREVIATIONSviiiABSTRACTixABSTRAKx

CHAPTER 1 INTRODUCTION

1.1	Background and problem statement	1
1.2	Significance of study	6
1.3	Objectives of study	6

CHAPTER 2 LITERATURE REVIEW

2.1	Bioactive material	7
2.2	Bioactive sol-gel method	9
2.3	Application of bioactive glass in biomedical field	12
2.4	Effect of Strontium bioactive glass deposited on bone	13
2.5	Effect of Zinc bioactive glass deposited on bone	15
2.6	Simulated body fluid	16

CHAPTER 3 METHODOLOGY

3.1	Mater	ials	19
	3.1.1	Chemicals	19
	3.1.2	Apparatus	21
	3.1.3	Instruments	22
3.2	Metho	ods	22
	3.2.1	Material preparation	23
	3.2.2	Preparation of bioactive glass	24
3.3	Prepar	ration of Simulated Body Fluid	27
	3.3.1	Dissolution of reagents	29
	3.3.2	Adjustment of pH	29
	3.3.3	Immersion of SrO and ZnO bioactive glass in SBF	30
3.4	Chara	cterization of SrO and ZnO bioactive glass	31
	3.4.1	Thermogravimetric Analysis (TGA)	31
	3.4.2	Fourier Transforms Infrared Reflection Spectroscopy (FTIR)	32
	3.4.3	Scanning Electron Microscope (SEM)	32

...

CHAP	PTER 4 RESULTS AND DISCUSSION			
4.1	.1 Thermogravimetric Analysis (TGA)			
4.2	2 Characterization			
	4.2.1 Scanning Electron Microscope (SEM)	35		
	4.2.2 Fourier Transform Infrared Reflection Spectroscopy (FTIR)	41		
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 56				
CITED REFERENCES		59		
APPE	NDICES	64		
CURR	PICULUM VITAE	68		

v

LIST OF TABLES

Table	Caption	Page
2.5	Ion concentrations and pH of simulated body fluid and human blood plasma	17
3.2.1	Weight percent composition of bioactive glass sol gel	24
3.3.1	Comparison between ion concentration in SBF and human blood plasma	27
3.3.2	Proposed batch by Kokubo and Takadama	28
4.6	FTIR result 0 wt% content of SrO and ZnO bioactive glass before and after immersion of SBF	42
4.7	FTIR result 1 wt% content of SrO and ZnO bioactive glass before and after immersion of SBF	45
4.8	FTIR result 3 wt% content of SrO and ZnO bioactive glass before and after immersion of SBF	48
4.9	FTIR result 5 wt% content of SrO and ZnO bioactive glass before and after immersion of SBF	52

ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF STRONTIUM AND ZINC CONTAINING SOL GEL DERIVED BIOACTIVE GLASS

The silica bioactive glass of SiO₂-P₂O₅-CaO-SrO-ZnO consisting of 0%, 1%, 3% and 5% of strontium and zinc in weight percentage was synthesized by chemical based sol gel method and analyzed by TGA, FTIR and SEM instrument. The main objective is to study the structural properties of glass and its physical morphology by the FTIR and SEM respectively and also study the bioactivity of glass before and after soaked with SBF solution. Which is similar to human body fluid in order to predict the bone bonding ability of bioactive glass. If growth of white apatite layer is observed after immersed in SBF for seven days thus the glass has ability of bone bonding. The TGA analysis reveals the silica gel was successfully synthesized since all the precursors and moistures were evaporated. The FTIR analysis indicates presence of apatite layer by the P-O bending band which was observed in all composition after soaked with SBF. FTIR also reveals the Si-O band which proves formation of crystalline silicate (silica gel). SEM images shows a needle and flake like structure in 1% bioactive glass after treated with SBF, and a denser and thicker white coating which covered more of the surface of glass was observed in 3% soaked bioactive glass.