e-Proceedings of the $5^{\text {th }}$ International Conference on Computing, Mathematics and Statistics (iCMS 2021)

Driving Research Towards Excellence

Editor-in-Chief: Norin Rahayu Shamsuddin

Editorial team:
Dr. Afida Ahamad
Dr. Norliana Mohd Najib
Dr. Nor Athirah Mohd Zin
Dr. Siti Nur Alwani Salleh
Kartini Kasim
Dr. Ida Normaya Mohd Nasir
Kamarul Ariffin Mansor
e-ISBN: 978-967-2948-12-4
DOI

Library of Congress Control Number:
Copyright © 2021 Universiti Teknologi MARA Kedah Branch
All right reserved, except for educational purposes with no commercial interests. No part of this publication may be reproduced, copied, stored in any retrieval system or transmitted in any form or any means, electronic or mechanical including photocopying, recording or otherwise, without prior permission from the Rector, Universiti Teknologi MARA Kedah Branch, Merbok Campus. 08400 Merbok, Kedah, Malaysia.

The views and opinions and technical recommendations expressed by the contributors are entirely their own and do not necessarily reflect the views of the editors, the Faculty or the University.

Publication by
Department of Mathematical Sciences
Faculty of Computer \& Mathematical Sciences
UiTM Kedah

TABLE OF CONTENT

PART 1: MATHEMATICS

STATISTICAL ANALYSIS ON THE EFFECTIVENESS OF SHORT-TERM

PROGRAMS DURING COVID-19 PANDEMIC: IN THE CASE OF PROGRAM BIJAK

SIFIR 2020

Nazihah Safie, Syerrina Zakaria, Siti Madhihah Abdul Malik, Nur Baini Ismail, Azwani Alias Ruwaidiah
Idris

RADIATIVE CASSON FLUID OVER A SLIPPERY VERTICAL RIGA PLATE WITH
VISCOUS DISSIPATION AND BUOYANCY EFFECTS

Siti Khuzaimah Soid, Khadijah Abdul Hamid, Ma Nuramalina Nasero, NurNajah Nabila Abdul Aziz

```
GAUSSIAN INTEGER SOLUTIONS OF THE DIOPHANTINE EQUATION \(x^{4}+y^{4}=z^{3}\) FOR \(\mathbf{x} \neq \mathbf{y}\)
Shahrina Ismail, Kamel Ariffin Mohd Atan and Diego Sejas Viscarra
```

A SEMI ANALYTICAL ITERATIVE METHOD FOR SOLVING THE EMDEN- 28 FOWLER EQUATIONS
Mat Salim Selamat, Mohd Najir Tokachil, Noor Aqila Burhanddin, Ika Suzieana Murad and Nur Farhana Razali
ROTATING FLOW OF A NANOFLUID PAST A NONLINEARLY SHRINKING 36 SURFACE WITH FLUID SUCTION
Siti Nur Alwani Salleh, Norfifah Bachok and Nor Athirah Mohd Zin
MODELING THE EFFECTIVENESS OF TEACHING BASIC NUMBERS THROUGH 46 MINI TENNIS TRAINING USING MARKOV CHAINRahela Abdul Rahim, Rahizam Abdul Rahim and Syahrul Ridhwan Morazuk
PERFORMANCE OF MORTALITY RATES USING DEEP LEARNING APPROACH 53
Mohamad Hasif Azim and Saiful Izzuan Hussain
UNSTEADY MHD CASSON FLUID FLOW IN A VERTICAL CYLINDER WITH 60 POROSITY AND SLIP VELOCITY EFFECTS
Wan Faezah Wan Azmi, Ahmad Qushairi Mohamad, Lim Yeou Jiann and Sharidan Shafie
DISJUNCTIVE PROGRAMMING - TABU SEARCH FOR JOB SHOP SCHEDULING 68 PROBLEMS. Z. Nordin, K.L. Wong, H.S. Pheng, H. F. S. Saipol and N.A.A. Husain
FUZZY AHP AND ITS APPLICATION TO SUSTAINABLE ENERGY PLANNING 78 DECISION PROBLEM
Liana Najib and Lazim Abdullah
A CONSISTENCY TEST OF FUZZY ANALYTIC HIERARCHY PROCESS 89
Liana Najib and Lazim Abdullah
FREE CONVECTION FLOW OF BRINKMAN TYPE FLUID THROUGH AN COSINE 98OSCILLATING PLATESiti Noramirah Ibrahim, Ahmad Qushairi Mohamad, Lim Yeou Jiann, Sharidan Shafie and MuhammadNajib Zakaria

RADIATION EFFECT ON MHD FERROFLUID FLOW WITH RAMPED WALL TEMPERATURE AND ARBITRARY WALL SHEAR STRESS
 Nor Athirah Mohd Zin, Aaiza Gul, Siti Nur Alwani Salleh, Imran Ullah, Sharena Mohamad Isa, Lim Yeou
 Jiann and Sharidan Shafie

PART 2: STATISTICS

A REVIEW ON INDIVIDUAL RESERVING FOR NON-LIFE INSURANCE 117
Kelly Chuah Khai Shin and Ang Siew Ling
STATISTICAL LEARNING OF AIR PASSENGER TRAFFIC AT THE MURTALA 123MUHAMMED INTERNATIONAL AIRPORT, NIGERIAChristopher Godwin Udomboso and Gabriel Olugbenga Ojo
ANALYSIS ON SMOKING CESSATION RATE AMONG PATIENTS IN 137 HOSPITAL SULTAN ISMAIL, JOHOR
Siti Mariam Norrulashikin, Ruzaini Zulhusni Puslan, Nur Arina Bazilah Kamisan and Siti Rohani Mohd Nor
EFFECT OF PARAMETERS ON THE COST OF MEMORY TYPE CHART146Sakthiseswari Ganasan, You Huay Woon and Zainol Mustafa
EVALUATION OF PREDICTORS FOR THE DEVELOPMENT AND PROGRESSION 152 OF DIABETIC RETINOPATHY AMONG DIABETES MELLITUS TYPE 2 PATIENTS
Syafawati Ab Saad, Maz Jamilah Masnan, Karniza Khalid and Safwati Ibrahim
REGIONAL FREQUENCY ANALYSIS OF EXTREME PRECIPITATION IN 160 PENINSULAR MALAYSIAIszuanie Syafidza Che Ilias, Wan Zawiah Wan Zin and Abdul Aziz Jemain
EXPONENTIAL MODEL FOR SIMULATION DATA VIA MULTIPLE IMPUTATION 173 IN THE PRESENT OF PARTLY INTERVAL-CENSORED DATA
Salman Umer and Faiz Elfaki
THE FUTURE OF MALAYSIA'S AGRICULTURE SECTOR BY 2030 181
Thanusha Palmira Thangarajah and Suzilah Ismail
MODELLING MALAYSIAN GOLD PRICES USING BOX-JENKINS APPROACH 186
Isnewati Ab Malek, Dewi Nur Farhani Radin Nor Azam, Dinie Syazwani Badrul Aidi and Nur Syafiqah Sharim
WATER DEMAND PREDICTION USING MACHINE LEARNING: A REVIEW 192
Norashikin Nasaruddin, Shahida Farhan Zakaria, Afida Ahmad, Ahmad Zia Ul-Saufie and Norazian Mohamaed Noor
DETECTION OF DIFFERENTIAL ITEM FUNCTIONING FOR THE NINE- 201 QUESTIONS DEPRESSION RATING SCALE FOR THAI NORTH DIALECT
Suttipong Kawilapat, Benchlak Maneeton, Narong Maneeton, Sukon Prasitwattanaseree, Thoranin Kongsuk, Suwanna Arunpongpaisal, Jintana Leejongpermpool, Supattra Sukhawaha and Patrinee Traisathit

MODELING OF INFLUENCE FACTORS PERCENTAGE OF GOVERNMENTS' RICE RECIPIENT FAMILIES BASED ON THE BEST FOURIER SERIES ESTIMATOR
 Chaerobby Fakhri Fauzaan Purwoko, Ayuning Dwis Cahyasari, Netha Aliffia and M. Fariz Fadillah Mardianto

CLUSTERING OF DISTRICTS AND CITIES IN INDONESIA BASED ON POVERTY INDICATORS USING THE K-MEANS METHOD
Khoirun Niswatin, Christopher Andreas, Putri Fardha Asa OktaviaHans and M. Fariz Fadilah Mardianto

ANALYSIS OF THE EFFECT OF HOAX NEWS DEVELOPMENT IN INDONESIA USING STRUCTURAL EQUATION MODELING-PARTIAL LEAST SQUARE
Christopher Andreas, Sakinah Priandi, Antonio Nikolas Manuel Bonar Simamora and M. Fariz Fadillah Mardianto

A COMPARATIVE STUDY OF MOVING AVERAGE AND ARIMA MODEL IN 241
FORECASTING GOLD PRICE
Arif Luqman Bin Khairil Annuar, Hang See Pheng, Siti Rohani Binti Mohd Nor and Thoo Ai Chin
CONFIDENCE INTERVAL ESTIMATION USING BOOTSTRAPPING METHODS AND MAXIMUM LIKELIHOOD ESTIMATE
Siti Fairus Mokhtar, Zahayu Md Yusof and Hasimah Sapiri

DISTANCE-BASED FEATURE SELECTION FOR LOW-LEVEL DATA FUSION OF SENSOR DATA

M. J. Masnan, N. I. Maha3, A. Y. M. Shakaf, A. Zakaria, N. A. Rahim and N. Subari

BANKRUPTCY MODEL OF UK PUBLIC SALES AND MAINTENANCE MOTOR VEHICLES FIRMS
 Asmahani Nayan, Amirah Hazwani Abd Rahim, Siti Shuhada Ishak, Mohd Rijal Ilias and Abd Razak Ahmad

INVESTIGATING THE EFFECT OF DIFFERENT SAMPLING METHODS ON IMBALANCED DATASETS USING BANKRUPTCY PREDICTION MODEL
Amirah Hazwani Abdul Rahim, Nurazlina Abdul Rashid, Abd-Razak Ahmad and Norin Rahayu Shamsuddin

INVESTMENT IN MALAYSIA: FORECASTING STOCK MARKET USING TIME

ANALYSIS OF THE PASSENGERS' LOYALTY AND SATISFACTION OF AIRASIA PASSENGERS USING CLASSIFICATION
 Ee Jian Pei, Chong Pui Lin and Nabilah Filzah Mohd Radzuan

HARMONY SEARCH HYPER-HEURISTIC WITH DIFFERENT
ADJUSTMENT OPERATOR FOR SCHEDULING PROBLEMS
Khairul Anwar, Mohammed A.Awadallah and Mohammed Azmi Al-Betar
PITCH

A 1D EYE TISSUE MODEL TO MIMIC RETINAL BLOOD PERFUSION DURING RETINAL IMAGING PHOTOPLETHYSMOGRAPHY (IPPG) ASSESSMENT: A DIFFUSION APPROXIMATION - FINITE ELEMENT METHOD (FEM) APPROACH
Harnani Hassan, Sukreen Hana Herman, Zulfakri Mohamad, Sijung Hu and Vincent M. Dwyer
INFORMATION SECURITY CULTURE: A QUALITATIVE APPROACH ON 325 MANAGEMENT SUPPORT

Qamarul Nazrin Harun, Mohamad Noorman Masrek, Muhamad Ismail Pahmi and Mohamad Mustaqim
Junoh

APPLY MACHINE LEARNING TO PREDICT CARDIOVASCULAR RISK IN RURAL CLINICS FROM MEXICO
Misael Zambrano-de la Torre, Maximiliano Guzmán-Fernández, Claudia Sifuentes-Gallardo, Hamurabi Gamboa-Rosales, Huizilopoztli Luna-García, Ernesto Sandoval-García, Ramiro Esquivel-Felix and Héctor Durán-Muñoz

ASSESSING THE RELATIONSHIP BETWEEN STUDENTS' LEARNING STYLES AND MATHEMATICS CRITICAL THINKING ABILITY IN A 'CLUSTER SCHOOL’
 Salimah Ahmad, Asyura Abd Nassir, Nor Habibah Tarmuji, Khairul Firhan Yusob and Nor Azizah Yacob

STUDENTS' LEISURE WEEKEND ACTIVITIES DURING MOVEMENT CONTROL ORDER: UiTM PAHANG SHARING EXPERIENCE

Syafiza Saila Samsudin, Noor Izyan Mohamad Adnan, Nik Muhammad Farhan Hakim Nik Badrul Alam, Siti Rosiah Mohamed and Nazihah Ismail

```
DYNAMICS SIMULATION APPROACH IN MODEL DEVELOPMENT OF UNSOLD NEW RESIDENTIAL HOUSING IN JOHOR
Lok Lee Wen and Hasimah Sapiri
```

WORD PROBLEM SOLVING SKILLS AS DETERMINANT OF MATHEMATICS 371
PERFORMANCE FOR NON-MATH MAJOR STUDENTS
Shahida Farhan Zakaria, Norashikin Nasaruddin, Mas Aida Abd Rahim, Fazillah Bosli and Kor Liew
Kee

ANALYSIS REVIEW ON CHALLENGES AND SOLUTIONS TO COMPUTER
ANALYSIS OF CLAIM RATIO, RISK-BASED CAPITAL AND VALUE-ADDEDINTELLECTUAL CAPITAL: A COMPARISON BETWEEN FAMILY AND GENERALTAKAFUL OPERATORS IN MALAYSIANur Amalina Syafiqa Kamaruddin, Norizarina Ishak, Siti Raihana Hamzah, Nurfadhlina Abdul Halim andAhmad Fadhly Nurullah Rasade
THE IMPACT OF GEOMAGNETIC STORMS ON THE OCCURRENCES OF EARTHQUAKES FROM 1994 TO 2017 USING THE GENERALIZED LINEAR MIXED MODELSN. A. Mohamed, N. H. Ismail, N. S. Majid and N. AhmadBIBLIOMETRIC ANALYSIS ON BITCOIN 2015-2020405Nurazlina Abdul Rashid, Fazillah Bosli, Amirah Hazwani Abdul Rahim, Kartini Kasim and FathiyahAhmad@Ahmad Jali
GENDER DIFFERENCE IN EATING AND DIETARY HABITS AMONG UNIVERSITY STUDENTS
Fazillah Bosli, Siti Fairus Mokhtar, Noor Hafizah Zainal Aznam, Juaini Jamaludin and Wan Siti Esah Che Hussain
MATHEMATICS ANXIETY: A BIBLIOMETRIX ANALYSIS 420Kartini Kasim, Hamidah Muhd Irpan, Noorazilah Ibrahim, Nurazlina Abdul Rashid and Anis MardianaAhmad
PREDICTION OF BIOCHEMICAL OXYGEN DEMAND IN MEXICAN SURFACE 428 WATERS USING MACHINE LEARNINGMaximiliano Guzmán-Fernández, Misael Zambrano-de la Torre, Claudia Sifuentes-Gallardo, OscarCruz-Dominguez, Carlos Bautista-Capetillo, Juan Badillo-de Loera, Efrén González Ramírez and HéctorDurán-Muñoz

Gaussian Integer Solutions of the Diophantine Equation $x^{4}+y^{4}=z^{3}$ for $x \neq y$

Shahrina Ismail ${ }^{1}$, Kamel Ariffin Mohd Atan ${ }^{2}$ and Diego Sejas Viscarra ${ }^{3}$
${ }^{1}$ Universiti Sains Islam Malaysia, ${ }^{2}$ Universiti Putra Malaysia, ${ }^{3}$ Universidad Simón I. Patiño (${ }^{1}$ shahrinaismail@usim.edu.my, ${ }^{2}$ kamelariffin48@gmail.com, ${ }^{3}$ diegosejas@usip.edu.bo)

The investigation of determining solutions for the Diophantine equation $x^{4}+y^{4}=z^{3}$ over the Gaussian integer field, for the specific case of $x \neq y$, is discussed. The discussion includes various preliminary results needed to build the future resolvent theory of the Diophantine equation studied. Our findings show the existence on infinitely many solutions. Since the analytical method used is based on simple algebraic properties, it can be easily generalized to study the behavior and the conditions for existence of solutions to other Diophantine equations, allowing a deeper understanding, even when no general solution is known.

Keywords: Diophantine equation, Gaussian integer, algebraic properties, existence, quartic

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solution or how many. Many studies were conducted in the past on solving equations in the field of Gaussian integers. For example, Szabó (2004) investigated some fourth-degree Diophantine equations in Gaussian integers, stating that for certain choices of the coefficients a, b, c, the solutions of the Diophantine equation $a x^{4}+b y^{4}=c z^{2}$ in Gaussian integers satisfy $x y=0$. Apart from that, Najman (2010) showed that the equation $x^{4} \pm y^{4}=i z^{2}$ has only trivial solutions in Gaussian integers. Then, Emory (2012) showed that nontrivial quadratic solutions exist for $x^{4}+y^{4}=d^{2} z^{4}$ when either $d=1$ or d is a congruent number. Moreover, Izadi et al. (2015) examined solutions in the Gaussian integers for different choices of a, b and c for the Diophantine equation $a x^{4}+b y^{4}=c z^{2}$. The same author, Izadi et al. (2018), then examined a class of fourth-power Diophantine equations of the form $x^{4}+k x^{2} y^{2}+y^{4}=z^{2}$ and $a x^{4}+b y^{4}=c z^{2}$ in the Gaussian integers, where a and b are prime integers. In recent years, Söderlund (2020) discovered that the only primitive non-zero integer solutions to the Fermat quartic $34 x^{4}+y^{4}=z^{4}$ are $(x, y, z)=(\pm 2, \pm 3, \pm 5)$. The proofs are based on a previously given complete solution to another Fermat quartic, namely $x^{4}+y^{4}=17 z^{4}$. Moreover, Jakimczuk (2021) investigated the equation $x^{4}-y^{4}=z^{s}$, and showed that if s is an odd prime, then the equation has infinitely many solutions (x, y, z) where $x>y>0$ and $z>0$.

In this paper we carry on the investigation of determining solutions for the Diophantine equation $x^{4}+y^{4}=z^{3}$ over the Gaussian integer field for the specific case of $x \neq y$, which has remained unsolved. Note that the case $x=y$ has been solved in Ismail et al. (2021).

2. Results and discussion

In this section, we will use elementary algebraic methods to study the behavior of the Diophantine equation $x^{4}+y^{4}=z^{3}$ when $x \neq y$. Our interest is to determine which conditions give us non-trivial solutions and which ones produce no solutions of only trivial ones. For simplicity, we will focus only on non-trivial solutions.

The ensuing discussion is supported by the following analysis. Suppose that (a, b, c) is a solution of

$$
\begin{equation*}
x^{4}+y^{4}=z^{3} \tag{1}
\end{equation*}
$$

such that $a \neq b$, and $a, b, c \in \mathbb{Z}[i]$. Let

$$
\begin{equation*}
a=r+s i, \quad b=t+m i \quad \text { and } \quad c=g+h i \tag{2}
\end{equation*}
$$

where $r, s, t, m, g, h \in \mathbb{Z}$, and $r \neq t$ or $s \neq m$. Then, replacing on (1), we have

$$
\left(r^{4}+t^{4}-6\left(r^{2} s^{2}+t^{2} m^{2}\right)+s^{4}+m^{4}\right)+4\left(r^{3} s-r s^{3}+t^{3} m-t m^{3}\right) i=\left(g^{3}-3 g h^{2}\right)+\left(3 g^{3} h-h^{3}\right) i,
$$

which in turn implies that

$$
\begin{gather*}
r^{4}+t^{4}-6\left(r^{2} s^{2}+t^{2} m^{2}\right)+s^{4}+m^{4}=g^{3}-3 g h^{2}, \tag{3}\\
4\left(r^{3} s-r s^{3}+t^{3} m-t m^{3}\right)=3 g^{2} h-h^{3} . \tag{4}
\end{gather*}
$$

Starting from (3) and (4), we will divide our study into four main cases based on possible values for r and s. Each of these cases will the be subdivided into four subcases based in possible values for t and m. Finally, we will further subdivide these into four possibilities based on values for g and h.

Case 1. $(r=0, s=0, t=0, m \neq 0, g \neq 0, h=0)$
From (3) we have $m^{4}=g^{3}$. (Notice that (4) is automatically satisfied under this case.) It follows that $|m|=g^{3 / 4}$, with m an integer. This implies that $g=u^{4}$ for some integer u. Thus, $|m|=|u|^{3}$, or, equivalently, $m=u^{3}$. Hence, $(m, g)=\left(u^{3}, u^{4}\right)$. By letting $u= \pm 1, \pm 2, \pm 3, \ldots, \pm k, \ldots$, where k is an integer, we obtain infinitely many solutions for (m, g). In turn, this leads us to infinitely many solutions for (a, b, c) of the form

$$
(a, b, c)=\left(0, n^{3} i, n^{4}\right) \text {. }
$$

Case 2. $(r=0, s=0, t \neq 0, m \neq 0, g \neq 0, h=0)$
From (4), we obtain $4\left(t^{3} m-t m^{3}\right)=0$, which we can rewrite as $4 t m\left(t^{2}-m^{2}\right)$. Since $t, m \neq 0$, we must have $t^{2}-m^{2}=0$, which implies $|t|=|m|$ or, equivalently, $t= \pm m$. Upon replacing on (3) we obtain

$$
\begin{equation*}
-4 m^{4}=g^{3} . \tag{5}
\end{equation*}
$$

We can clearly see that $g<0$ and $2 \mid g$. Then, let

$$
\begin{equation*}
g=-2^{\alpha} v, \tag{6}
\end{equation*}
$$

where $v \wedge 2=1$. Replacing on (5) yields $-4 m^{4}=-2^{3 \alpha} v^{3}$, which implies

$$
\begin{equation*}
|m|=2^{\frac{3 \alpha-2}{4}} v^{\frac{3}{4}} . \tag{7}
\end{equation*}
$$

Since m is an integer, then $3 \alpha \equiv 2(\bmod 4)$, which is an equation whose only solutions are of the form $\alpha=4 k+2$ for $k \in \mathbb{Z}$. On the other hand, once again due to m being an integer, there must exist an integer u such that $v=u^{4}$. Then, replacing on (6), we have $g=-2^{4 k+2} u^{4}$, and replacing on (7), we have $|m|=2^{3 k+1}|u|^{3}$.

Therefore, this case leads to $(t, m, g)=\left(\pm 2^{3 k+1} u^{3}, \pm 2^{3 k+1} u^{3},-2^{4 k+2} u^{4}\right)$ and $(t, m, g)=$ $\left(\pm 2^{3 k+1} u^{3}, \mp 2^{3 k+1} u^{3},-2^{4 k+2} u^{4}\right)$. In turn, this lead to

$$
(a, b, c)=\left(0,2^{3 k+1} u^{3}(1 \pm i),-2^{4 k+2} u^{4}\right),
$$

for $k, u \in \mathbb{Z}$ and $k>0$.
Case 3. $(r=0, s \neq 0, t=0, m \neq 0, g \neq 0, h=0)$
From (3), we obtain $s^{4}+m^{4}=g^{3}$. (Under these conditions, (4) is automatically satisfied.) Since s, m and g are all integers, from Theorem 1.2 and Theorem 1.3 in Ismail and Mohd Atan (2013), the triplet $(x, y, z)=(s, m, g)$ is a solution to the equation $x^{4}+y^{4}=z^{3}$ if and only if $s=m=4 n^{3}$ and
$g=8 n^{4}$ (which contradicts the hypothesis that $a \neq b$), or $s=u n^{3 k-1}, m=v n^{3 k-1}$ and $g=n^{4 k-1}$, where $n=u^{4}+v^{4}$ and for any integer k. It follows from (2) that

$$
(a, b, c)=\left(u n^{3 k-1} i, v n^{3 k-1} i, n^{4 k-1}\right),
$$

where $u \neq v$.
Case 4. $(r=0, s \neq 0, t \neq 0, m \neq 0, g \neq 0, h=0)$
From (3) and (4) we obtain

$$
\begin{gather*}
t^{4}-6 t^{2} m^{2}+m^{4}+s^{4}=g^{3} \tag{8}\\
4 t^{3} m-4 t m^{3}=0 \tag{9}
\end{gather*}
$$

respectively. We can rewrite (9) as $4 t m\left(t^{2}-m^{2}\right)=0$. Since $t, m \neq 0$, we must have $|t|=|m|$. Substituting in (8) yields

$$
\begin{equation*}
s^{4}-4 m^{4}=g^{3} . \tag{10}
\end{equation*}
$$

There are two possibilities to be considered here:
(i) $|s|=|m|$,
(ii) $|s| \neq|m|$.

Under (i) we have the following theorem, which states the form of solutions to the equation $s^{4} 4 m^{4}=g^{3}$ when $|s|=|m|$.

Theorem 1. The solutions to the equation $x^{4}-4 y^{4}=z^{3}$, when $|x|=|y|$, are given by $x=s, y=m$ and $z=g$, where

$$
\begin{aligned}
& (s, m, g)=\left(9 n^{3}, 9 n^{3},-27 n^{4}\right) \\
& (s, m, g)=\left(9 n^{3},-9 n^{3},-27 n^{4}\right) .
\end{aligned}
$$

Proof. Let $x=s$ and $y=m$ such that $s=m$, and let $z=g$ be a solution to $x^{4}-4 y^{4}=z^{3}$. We see that

$$
\begin{equation*}
-3 m^{4}=g^{3} . \tag{11}
\end{equation*}
$$

This clearly implies that $g \equiv 0(\bmod 3)$ and g is negative. Let $g=-3^{e} u$, where $3 \wedge u=1$ and $e>1$. Thus, from (11) wee that

$$
-3 m^{4}=-3^{3 e} u^{3}
$$

from which we obtain

$$
\begin{equation*}
|m|=3^{\frac{3 e-1}{4}} u^{\frac{3}{4}} \quad \text { or } \quad m= \pm 3^{\frac{3 e-1}{4}} u^{\frac{3}{4}} . \tag{12}
\end{equation*}
$$

Since m is an integer, we must have that $\frac{3 e-1}{4}$ is an integer and there exists an integer v such that $u=v^{4}$. Thus, $3 e-1 \equiv 0(\bmod 4)$, which on simplifying gives $e=3+4 j$ for some integer j. It follows from (12) that

$$
\begin{equation*}
m= \pm 3^{2+3 j} v^{3} . \tag{13}
\end{equation*}
$$

By (11) and (13), we obtain $g^{3}=-3\left(3^{2+3 j} v^{3}\right)^{4}$, which on simplifying gives $g=-3^{3}\left(3^{j} v\right)^{4}$. Let $n=3^{j} v$. Then, we will have $g=-27 n^{4}$, which from (13) gives $m= \pm 9 n^{3}$. Therefore, $s= \pm 9 n^{3}$. Hence, considering that $|s|=|m|$ (or $s= \pm m$), we have

$$
\begin{aligned}
& (s, m, g)=\left(9 n^{3}, 9 n^{3},-27 n^{4}\right), \\
& (s, m, g)=\left(9 n^{3},-9 n^{3},-27 n^{4}\right),
\end{aligned}
$$

as asserted, with $n=3^{j} v \in \mathbb{Z}$.

Now, remembering that $|t|=|m|$, we have the following solutions for the system (8)-(9) under the condition $|s|=|m|$:

$$
\begin{gathered}
(s, t, m, g)=\left(9 n^{3}, 9 n^{3}, \pm 9 n^{3},-27 n^{4}\right) \\
(s, t, m, g)=\left(9 n^{3},-9 n^{3}, \pm 9 n^{3},-27 n^{4}\right)
\end{gathered}
$$

This, in turn, gives us the following solutions to our original Diophantine equation:

$$
\begin{aligned}
& (a, b, c)=\left(9 n^{3} i, 9 n^{3}(1 \pm i),-27 n^{4}\right) \\
& (a, b, c)=\left(9 n^{3} i,-9 n^{3}(1 \pm i),-27 n^{4}\right)
\end{aligned}
$$

Next, under (ii), we will show that (10) has no solutions when $|s| \neq|m|$. First, we state the following result.

Lemma 1. Let u and v be integers such that $u \wedge v=1$, and let $\left(u^{2}-2 v^{2}\right) \wedge\left(u^{2}+2 v^{2}\right)=d$. We have that if u is odd, then $d=1$; if u is even, then $d=2$.

Proof. Let $\left(u^{2}-2 v^{2}\right) \wedge\left(u^{2}+2 v^{2}\right)=d$. Then, there exist s and t such that

$$
u^{2}-2 v^{2}=d s \quad \text { and } \quad u^{2}+2 v^{2}=d t
$$

Suppose first that u is odd. Then, d is odd since both $u^{2}-2 v^{2}$ and $u^{2}+2 v^{2}$ are odd. Also,

$$
2 u^{2}=d(s+t) \quad \text { and } \quad 4 v^{2}=d(t-s)
$$

Since $d \wedge 2=1$, we must have that $d \mid u^{2}$ and $d \mid v^{2}$. We conclude that $d=1$ since $u \wedge v=1$.
Suppose next that u is even. Let $u=2^{e} w$, where e is a positive integer and $2 \wedge w=1$. Then,

$$
u^{2}-2 v^{2}=\left(2^{e} w\right)^{2}-2 v^{2} \quad \text { and } \quad u^{2}+2 v^{2}=\left(2^{e} w\right)^{2}+2 v^{2}
$$

from which we see that

$$
u^{2}-2 v^{2}=2\left(2^{2 e-1} w^{2}-v^{2}\right) \quad \text { and } \quad u^{2}+2 v^{2}=2\left(2^{2 e-1} w^{2}+v^{2}\right)
$$

Now, since $u \wedge v=1$, it follows that v is odd and $w \wedge v=1$, and by a similar method as above, it can be proved that

$$
\left(2^{2 e-1} w^{2}-v^{2}\right) \wedge\left(2^{2 e-1} w^{2}+v^{2}\right)=1
$$

Thus, we can clearly see that

$$
\left(u^{2}-2 v^{2}\right) \wedge\left(u^{2}+2 v^{2}\right)=2\left(2^{2 e-1} w^{2}-v^{2}\right) \wedge 2\left(2^{2 e-1} w^{2}+v^{2}\right)=2
$$

Therefore, $\left(u^{2}-2 v^{2}\right) \wedge\left(u^{2}+2 v^{2}\right)=1$ when u is odd, and $\left(u^{2}-2 v^{2}\right) \wedge\left(u^{2}+2 v^{2}\right)=2$ when u is even, as asserted.

We now have the following lemma which states the nonexistence of solutions for (10) under certain particular conditions.

Lemma 2. There are no integer solutions to $x^{4}-4 y^{4}=z^{3}$ such that $x \wedge y=1, x$ is odd, and $y \neq 0$.
Proof. Suppose there exist integers u, v and g such that $u^{4}-4 v^{4}=g^{3}$, with $u \wedge v=1$, u odd, and $v \neq 0$. Then,

$$
\left(u^{2}-2 v^{2}\right)\left(u^{2}+2 v^{2}\right)=g^{3}
$$

Since u is odd, by Lemma 1 we have $\left(u^{2}-2 v^{2}\right) \wedge\left(u^{2}+2 v^{2}\right)=1$, so $\left(u^{2}+2 v^{2}\right)$ and $\left(u^{2}-2 v^{2}\right)$ are coprime factors of g^{3}. Let $g=a b$, such that $u^{2}+2 v^{2}=a^{3}$ and $u^{2}-2 v^{2}=b^{3}$. Then $a \wedge b=1$. We can readily see that

$$
\begin{align*}
& a^{3}+b^{3}=2 u^{2} \tag{14}\\
& a^{3}-b^{3}=4 v^{2} \tag{15}
\end{align*}
$$

From Cohen (2002), given that $a \wedge b=1$, equation (14) has only two disjoint parameterized solutions where u is odd, according to the following cases (up to exchange of u and v).
(a) For $s, t \in \mathbb{Z}$ such that $s \wedge t=1, s$ is odd and $s \not \equiv t(\bmod 3)$,

$$
\left\{\begin{array}{l}
a=\left(s^{2}+2 t^{2}\right)\left(5 s^{2}+8 t s+2 t^{2}\right) \\
b=-\left(s^{2}+4 t s-2 t^{2}\right)\left(3 s^{2}+4 t s+2 t^{2}\right) \\
u= \pm\left(s^{2}-2 t s-2 t^{2}\right)\left(7 s^{4}+20 t s^{3}+24 t^{2} s^{2}+8 t^{3} s+4 t^{4}\right)
\end{array}\right.
$$

By replacing in (15), we have

$$
\begin{equation*}
v^{2}=2 s\left(19 s^{4}-4 s^{3} t+8 s t^{3}+4 t^{4}\right)\left(s^{4}+4 s^{3} t+16 s^{2} t^{2}+24 s t^{3}+12 t^{4}\right)\left(s^{2}+s t+t^{2}\right)(s+2 t) . \tag{16}
\end{equation*}
$$

Since v is an integer, at least one of the parameterized factors in (15) must be even. We can readily see that $s^{2}+s t+t^{2}$ must be even, since the remaining factors are odd. Upon rewriting $s^{2}+s t+t^{2}=s^{2}+t(s+t)$, we can see that s and $t(s+t)$ have the same parity. Thus, $t(s+t)$ should be odd, implying that t and $t+s$ are odd. However, this is not possible since $t+s$ would then be the sum of two odd numbers, making it even. This is a contradiction, so this case has no solutions.
(b) For $s, t \in \mathbb{Z}$ such that $s \wedge t=1, s \not \equiv t(\bmod 2)$ and $3 \nmid t$,

$$
\left\{\begin{array}{l}
a=\left(3 s^{2}-2 t s+t^{2}\right)\left(3 s^{2}+6 t s+t^{2}\right) \\
b=\left(3 s^{2}-6 t s+t^{2}\right)\left(3 s^{2}+2 t s+t^{2}\right) \\
u= \pm\left(3 s^{2}-t^{2}\right)\left(9 s^{4}+18 t^{2} s^{2}+t^{4}\right)
\end{array}\right.
$$

By replacing in (15), we have

$$
\begin{equation*}
v^{2}=2 s t\left(81 s^{4}-6 s^{2} t^{2}+t^{4}\right)\left(3 s^{4}-2 s^{2} t^{2}+3 t^{4}\right)\left(3 s^{2}+t^{2}\right) \tag{17}
\end{equation*}
$$

First, we will prove that all the parameterized factors of (17) are pairwise coprime. Indeed, we know that $s \wedge t=1$, and it is evident that s does not divide any other parameterized factors, nor does t. Then, we only need to prove that the parenthesized factors are pairwise coprime. As an example, we will prove the second equality; the other two have similar proofs.
Let $d=\left(81 s^{4}-6 s^{2} t^{2}+t^{4}\right) \wedge\left(3 s^{2}+t^{2}\right)$, and suppose $d \neq 1$. Then, there exist integers α and β such that

$$
\begin{gather*}
81 s^{4}-6 s^{2} t^{2}+t^{4}=d \alpha \tag{18}\\
3 s^{2}+t^{2}=d \beta \tag{19}
\end{gather*}
$$

Let us notice that (19) and the hypotheses impose certain restrictions on d. Indeed, we must have $2 \nmid d$, because the left-hand-side of the equation is odd; also, $3 \nmid d$ because $3 \nmid t$; finally, $d \nmid t^{2}$ because otherwise we would have $d \mid s^{2}$, which contradicts that $s \wedge t=1$.

By multiplying (19) by $-27 s^{2}$ and adding (19), we have

$$
t^{2}\left(t^{2}-33 s^{2}\right)=d\left(\alpha-27 s^{2} \beta\right)
$$

From this, we must have $d \mid\left(t^{2}-33 s^{2}\right)$. Then, there exists an integer γ such that $t^{2}-33 s^{4}=$ $d \gamma$. From this and (19), we have $36 s^{2}=d(\beta-\gamma)$, which leads to a contradiction in light of the restrictions imposed by (19). Thus, we must have $d=1$ in this case.

Therefore, the parameterized factors on (17) are pairwise coprime. We must conclude that all those factors are squares, except for the one that is even, i.e, s or t. In particular, we must have that

$$
\begin{equation*}
3 s^{4}-2 s^{2} t^{2}+3 t^{4}=r^{2} \tag{20}
\end{equation*}
$$

for some integer r. Since $s \not \equiv t(\bmod 2)$, there exists an integer k such that $s-t=2 k+1$ or, equivalently, $s=2 k+t+1$. By replacing on (20), we obtain

$$
\begin{aligned}
r^{2}= & 48 k^{4}+96 k^{3} t+64 k^{2} t^{2}+16 k t^{3}+4 t^{4}+96 k^{3}+144 k^{2} t+64 k t^{2} \\
& +8 t^{3}+72 k^{2}+72 k t+16 t^{2}+24 k+12 t+3
\end{aligned}
$$

We can readily see that the left-hand-side of this equation has the form $4 n+3$, for some integer n, i.e., $4 n+3=r^{2}$. However, $r^{2} \not \equiv 3(\bmod 4)$ for all $r \in \mathbb{Z}$, which leads to a contradiction, so this case has no solutions.
Therefore, we conclude that there are no integer solutions to $x^{4}-4 y^{4}=z^{3}$ with $x \wedge y=1, x$ odd, and $y \neq 0$.

We now prove the following result, which states the nonexistence of solutions to (10) when $x \wedge y=$ 1 and x is even. Notice that these conditions automatically imply that $y \neq 0$. Thus, this result is "complementary" to the previous lemma in the sense that we are considering exactly the same hypothesis, except for the fact that x is now even.
Lemma 3. There are no integer solutions to $x^{4}-4 y^{4}=z^{3}$ with $x \wedge y=1$ and x even.
Proof. Suppose $x=u, y=v$ and $z=g$ satisfy the equation $x^{4}-4 y^{4}=z^{3}$, with $u \wedge v=1$ and u an even integer. By lemma 1, we have

$$
\left(u^{2}-2 v^{2}\right) \wedge\left(u^{2}+2 v^{2}\right)=2
$$

Therefore, we must have

$$
\left(\frac{u^{2}-2 v^{2}}{2}\right) \wedge\left(\frac{u^{2}+2 v^{2}}{2}\right)=1
$$

Let $u=2^{e} w$, with $e \geq 1$ and $2 \wedge w=1$. Then,

$$
\left(2^{e} w\right)^{4}-4 v^{4}=g^{3}
$$

from which

$$
\left(\left(2^{e} w\right)^{2}+2 v^{2}\right)\left(\left(2^{e} w\right)^{2}-2 v^{2}\right)=g^{3}
$$

That is,

$$
\begin{equation*}
4\left(2^{2 e-1} w^{2}+v^{2}\right)\left(2^{e-1} w^{2}-v^{2}\right)=g^{3} \tag{21}
\end{equation*}
$$

It can be clearly seen that g is even. Hence, let

$$
g=2^{f} p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}
$$

be the prime power decomposition of g, where $2 \wedge p_{i}=1$ for $i=1,2, \ldots, k$, and $f>0$. Dividing both sides of (21) by 4 we obtain

$$
\begin{equation*}
\left(2^{2 e-1} w^{2}+v^{2}\right)\left(2^{e-1} w^{2}-v^{2}\right)=2^{3 f-2} p_{1}^{3 e_{1}} p_{2}^{3 e_{2}} \ldots p_{k}^{3 e_{k}} \tag{22}
\end{equation*}
$$

Since $f>0$, then $3 f-2 \geq 1$. Hence, the integer on the right-hand-side of (22) is even. Clearly, since v is odd, both factors on the left-hand-side of (22) are odd, and thus the integer of the right-hand-side should also be odd. Therefore, we have a contradiction. We conclude that there are no integer solutions $x=u, y=v$ and $z=g$ to the equation $x^{4}-4 y^{4}=z^{3}$ such that $u \wedge v=1$ and u is even.

The following result shows the nonexistence of solutions to (10) such that s and m are coprime.
Lemma 4. There exist no integer solutions to the equation $x^{4}-4 y^{4}=z^{3}$ with $x \wedge y=1$ and $y \neq 0$.
Proof. Direct consequence of Lemma 2 and Lemma 3.
Finally, we have the following theorem which states the nonexistence of solutions when $|x| \neq|y|$, i.e., the main result for (ii).

Theorem 2. The equation $x^{4}-4 y^{4}=z^{3}$ has no integer solutions with $|x| \neq|y| \neq 0$.
Proof. We will prove by contradiction. Suppose there exists a solution $x=s, y=m$ and $z=g$ to this equation, with $|x| \neq|y| \neq 0$. We then have $s^{4}-4 m^{4}=g^{3}$ with $s \neq m$. Let $d=s \wedge m, u=\frac{s}{d}$ and $v=\frac{m}{d}$. Then $u \wedge v=1$ and $v \neq 0$. Since $d \mid s$ and $d \mid m$, we have $d^{4} \mid g^{3}$. That is,

$$
\begin{equation*}
u^{4}-4 v^{4}=\frac{g^{3}}{d^{4}} \tag{23}
\end{equation*}
$$

where $\frac{g^{3}}{d^{4}}$ is an integer. Let $w=\frac{g^{3}}{d^{4}}$. Then, $w d^{4}=g^{3}$, and thus $g=w^{\frac{1}{3}} d^{\frac{4}{3}}$. Since g is an integer, there exist h and k such that $w=h^{3}$ and $d=k^{3}$. Replacing in (23), we have $u^{4}-4 v^{4}=h^{3}$. Thus, (u, v, h) is a solution to the equation $x^{4}-4 y^{4}=z^{3}$ with $u \wedge v=1$. This contradicts Lemma 4.

Therefore, we conclude there are no integer solutions $x=s, y=m$ and $z=g$ to the equation $x^{4}-4 y^{4}=z^{3}$ with $|s| \neq|m|$.

Corollary 1. The equation $x^{4}-4 y^{4}=z^{3}$ has integer solutions with $|x| \neq|y|$ if and only if $y=0$. In that case, $x=n^{3}$ and $y=n^{4}$ for $n \in \mathbb{Z}$.

Proof. Notice that, given the assertion of the previous theorem, it is enough to prove that there exist solutions when $y=0$. Indeed, suppose $y=0$. Then, $x^{4}=z^{3}$, which implies

$$
\begin{equation*}
x=z^{\frac{3}{4}} . \tag{24}
\end{equation*}
$$

Since x is an integer, there exists an integer n such that $z=n^{4}$. Replacing in (24), we have $x=$ n^{3}.

Remark 1. Although the previous corollary shows there exist solutions for (10) with $|s| \neq|m|$, we do not need to consider them under the context of the case we are currently studying (i.e., Case 2.4.3), because one of the corresponding conditions is $m \neq 0$.

2.1 Symmetrical cases

The cases we have studied in the previous discussion were carefully chosen as representatives of a simple algebraic analysis that can be performed on any Diophantine equation. There exist other cases that we have left out, whose solutions can be readily found by exploiting symmetries in their equations. In order to avoid redundancy, we have left out these case until now. Here, we present a small summary of the results that are obtained when the symmetric equations are exploited, and we further apply our method to solve them. Table 1 shows the results of this procedure.

3. Conclusions

In this work, we have studied the algebraic properties of the Diophantine equation $x^{4}+y^{4}=z^{4}$ in Gaussian integers, for $x \neq y$. Our main focus has been on studying some of the conditions that give rise to non-trivial solutions, and study their particular forms. Our findings show the existence on infinitely many solutions.

Since the analytical method we used in this study is based on simple algebraic properties, it can be easily generalized to study the behavior and the conditions for existence of solutions to other Diophantine equations, allowing a deeper understanding, even when no general solution is known.

Future work on this subject will be focused on obtaining a general solution to the equation.

Table 1: Solutions to cases considering symmetrical cases.

Conditions	Symmetrical to	Solutions (a, b, c)
$r=0, s=0, t \neq 0, m=0, g \neq 0, h=0$	Case 1	$\left(0, n^{3}, n^{4}\right)$
$r=0, s \neq 0, t=0, m=0, g \neq 0, h=0$	Case 1	$\left(n^{3} i, 0, n^{4}\right)$
$r \neq 0, s=0, t=0, m=0, g \neq 0, h=0$	Case 1	$\left(n^{3}, 0, n^{4}\right)$
$r \neq 0, s \neq 0, t=0, m=0, g \neq 0, h=0$	Case 2	$\left(2^{3 k+1} u^{3}(1 \pm i), 0,-2^{4 k+2} u^{4}\right)$
$r=0, s \neq 0, t \neq 0, m=0, g \neq 0, h=0$	Case 3	$\left(4 n^{3} i, 4 n^{3}, 8 n^{4}\right)$ $\left(u n^{3 k-1} i, v n^{3 k-1}, n^{4 k-1}\right)$
$r \neq 0, s=0, t=0, m \neq 0, g \neq 0, h=0$	Case 3	$\left(4 n^{3}, 4 n^{3} i, 8 n^{4}\right)$ $\left(u n^{3 k-1}, v n^{3 k-1} i, n^{4 k-1}\right)$
$r \neq 0, s=0, t \neq 0, m=0, g \neq 0, h=0$	Case 3	$\left(u n^{3 k-1}, v n^{3 k-1}, n^{4 k-1}\right)$
$r \neq 0, s=0, t \neq 0, m \neq 0, g \neq 0, h=0$	Case 4	$\left(9 n^{3}, 9 n^{3}(1 \pm i),-27 n^{4}\right)$ $\left(9 n^{3},-9 n^{3}(1 \pm i),-27 n^{4}\right)$
$r \neq 0, s \neq 0, t=0, m \neq 0, g \neq 0, h=0$	Case 4	$\left(9 n^{3}(1 \pm i), 9 n^{3} i,-27 n^{4}\right)$ $\left(-9 n^{3}(1 \pm i), 9 n^{3} i,-27 n^{4}\right)$
$r \neq 0, s \neq 0, t \neq 0, m=0, g \neq 0, h=0$	Case 4	$\left(9 n^{3}(1 \pm i), 9 n^{3},-27 n^{4}\right)$ $\left(-9 n^{3}(1 \pm i), 9 n^{3},-27 n^{4}\right)$

Acknowledgment

We would like to thank the reviewers for their constructive comments in beautifying this paper. We would also like to take this opportunity to thank Universiti Sains Islam Malaysia for the funding source via USIM RACER-GRANT (PPPI/USIM-RACER0120/FST/051000/12220).

References

Cohen, H. (2002). The Super-Fermat Equation. In Graduate Texts in Mathematics: Number Theory Volume II: Analytic and Modern Tools. New York: Springer-Verlag, New York, sixth edition.

Emory, M. (2012). The Diophantine Equation $X^{4}+Y^{4}=D^{2} Z^{4}$ in Quadratic Fields. Integers: Electronic Journal of Combinatorial Number Theory, 12:A65.

Ismail, S. and Mohd Atan, K. A. (2013). On the Integral Solutions of the Diophantine Equation $x^{4}+y^{4}=z^{3}$. Pertanika J. Sci. \& Technol., 21(1):119-126.

Ismail, S., Mohd Atan, K. A., Sejas Viscarra, D., and Eshkuvatov, Z. (2021). Determination of Gaussian integer zeroes of $F(x, z)=2 x^{4}-z^{3}$. Submitted to Malaysian Journal of Mathematical Sciences.

Izadi, F., Naghdali, R. F., and Brown, P. G. (2015). Some Quartic Diophantine Equations in the Gaussian Integers. Bulletin of the Australian Mathematical Society, 92(2):187-194.

Izadi, F., Rasool, N. F., and Amaneh, A. V. (2018). Fourth Power Diophantine Equations in Gaussian Integers. Proceedings-Mathematical Sciences, 128(2):1-6.

Jakimczuk, R. (2021). Generation of Infinite Sequences of Pairwise Relatively Prime Integers.
Najman, F. (2010). The Diophantine Equation $x^{4} \pm y^{4}=i z^{2}$ in Gaussian Integers. The American Mathematical Monthly, 117(7):637-641.

Söderlund, G. (2020). A Note on the Fermat Quartic $34 x^{4}+y^{4}=z^{4}$. Notes on Number Theory and Discrete Mathematics, 26(4):103-105.

Szabó, S. (2004). Some Fourth Degree Diophantine Equations in Gaussian Integers. Integers: Electronic Journal of Combinatorial Number Theory, 4:A16.

211 215
 INTERNATIONAL CONFERENCE ON COMPUTING,
 MATHEMATICS AND STATISTICS

