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Gaussian Integer Solutions of the Diophantine Equation x4 + y4 = z3 for x 6= y

Shahrina Ismail1, Kamel Ariffin Mohd Atan2 and Diego Sejas Viscarra3

1 Universiti Sains Islam Malaysia, 2 Universiti Putra Malaysia, 3 Universidad Simón I. Patiño
(1 shahrinaismail@usim.edu.my, 2 kamelariffin48@gmail.com, 3 diegosejas@usip.edu.bo)

The investigation of determining solutions for the Diophantine equation x4 + y4 = z3 over the
Gaussian integer field, for the specific case of x 6= y, is discussed. The discussion includes various
preliminary results needed to build the future resolvent theory of the Diophantine equation studied.
Our findings show the existence on infinitely many solutions. Since the analytical method used is
based on simple algebraic properties, it can be easily generalized to study the behavior and the con-
ditions for existence of solutions to other Diophantine equations, allowing a deeper understanding,
even when no general solution is known.

Keywords: Diophantine equation, Gaussian integer, algebraic properties, existence, quartic

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether
a given Diophantine equation has any solution or how many. Many studies were conducted in the
past on solving equations in the field of Gaussian integers. For example, Szabó (2004) investigated
some fourth-degree Diophantine equations in Gaussian integers, stating that for certain choices of the
coefficients a, b, c, the solutions of the Diophantine equation ax4 + by4 = cz2 in Gaussian integers
satisfy xy = 0. Apart from that, Najman (2010) showed that the equation x4 ± y4 = iz2 has only
trivial solutions in Gaussian integers. Then, Emory (2012) showed that nontrivial quadratic solutions
exist for x4 + y4 = d2z4 when either d = 1 or d is a congruent number. Moreover, Izadi et al. (2015)
examined solutions in the Gaussian integers for different choices of a, b and c for the Diophantine
equation ax4+by4 = cz2. The same author, Izadi et al. (2018), then examined a class of fourth-power
Diophantine equations of the form x4+kx2y2+y4 = z2 and ax4+by4 = cz2 in the Gaussian integers,
where a and b are prime integers. In recent years, Söderlund (2020) discovered that the only primitive
non-zero integer solutions to the Fermat quartic 34x4 + y4 = z4 are (x, y, z) = (±2,±3,±5).
The proofs are based on a previously given complete solution to another Fermat quartic, namely
x4 + y4 = 17z4. Moreover, Jakimczuk (2021) investigated the equation x4 − y4 = zs, and showed
that if s is an odd prime, then the equation has infinitely many solutions (x, y, z) where x > y > 0
and z > 0.

In this paper we carry on the investigation of determining solutions for the Diophantine equation
x4 + y4 = z3 over the Gaussian integer field for the specific case of x 6= y, which has remained
unsolved. Note that the case x = y has been solved in Ismail et al. (2021).

2. Results and discussion

In this section, we will use elementary algebraic methods to study the behavior of the Diophantine
equation x4 + y4 = z3 when x 6= y. Our interest is to determine which conditions give us non-trivial
solutions and which ones produce no solutions of only trivial ones. For simplicity, we will focus only
on non-trivial solutions.

The ensuing discussion is supported by the following analysis. Suppose that (a, b, c) is a solution
of

x4 + y4 = z3 (1)

such that a 6= b, and a, b, c ∈ Z[i]. Let

a = r + si, b = t+mi and c = g + hi, (2)
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where r, s, t,m, g, h ∈ Z, and r 6= t or s 6= m. Then, replacing on (1), we have(
r4 + t4 − 6(r2s2 + t2m2) + s4 +m4

)
+4(r3s−rs3+t3m−tm3)i = (g3−3gh2)+(3g3h−h3)i,

which in turn implies that

r4 + t4 − 6(r2s2 + t2m2) + s4 +m4 = g3 − 3gh2, (3)

4(r3s− rs3 + t3m− tm3) = 3g2h− h3. (4)

Starting from (3) and (4), we will divide our study into four main cases based on possible values
for r and s. Each of these cases will the be subdivided into four subcases based in possible values for
t and m. Finally, we will further subdivide these into four possibilities based on values for g and h.

Case 1. (r = 0, s = 0, t = 0, m 6= 0, g 6= 0, h = 0)
From (3) we have m4 = g3. (Notice that (4) is automatically satisfied under this case.) It follows that
|m| = g3/4, with m an integer. This implies that g = u4 for some integer u. Thus, |m| = |u|3, or,
equivalently, m = u3. Hence, (m, g) = (u3, u4). By letting u = ±1,±2,±3, . . . ,±k, . . ., where k
is an integer, we obtain infinitely many solutions for (m, g). In turn, this leads us to infinitely many
solutions for (a, b, c) of the form

(a, b, c) = (0, n3i, n4) .

Case 2. (r = 0, s = 0, t 6= 0, m 6= 0, g 6= 0, h = 0)
From (4), we obtain 4(t3m− tm3) = 0, which we can rewrite as 4tm(t2 −m2). Since t,m 6= 0, we
must have t2−m2 = 0, which implies |t| = |m| or, equivalently, t = ±m. Upon replacing on (3) we
obtain

−4m4 = g3. (5)

We can clearly see that g < 0 and 2 | g. Then, let

g = −2αv, (6)

where v ∧ 2 = 1. Replacing on (5) yields −4m4 = −23αv3, which implies

|m| = 2
3α−2

4 v
3
4 . (7)

Since m is an integer, then 3α ≡ 2 (mod 4), which is an equation whose only solutions are of the
form α = 4k + 2 for k ∈ Z. On the other hand, once again due to m being an integer, there must
exist an integer u such that v = u4. Then, replacing on (6), we have g = −24k+2u4, and replacing on
(7), we have |m| = 23k+1|u|3.

Therefore, this case leads to (t,m, g) = (±23k+1u3,±23k+1u3,−24k+2u4) and (t,m, g) =
(±23k+1u3,∓23k+1u3,−24k+2u4). In turn, this lead to

(a, b, c) =
(
0, 23k+1u3(1± i),−24k+2u4

)
,

for k, u ∈ Z and k > 0.

Case 3. (r = 0, s 6= 0, t = 0, m 6= 0, g 6= 0, h = 0)
From (3), we obtain s4 +m4 = g3. (Under these conditions, (4) is automatically satisfied.) Since s,
m and g are all integers, from Theorem 1.2 and Theorem 1.3 in Ismail and Mohd Atan (2013), the
triplet (x, y, z) = (s,m, g) is a solution to the equation x4+ y4 = z3 if and only if s = m = 4n3 and
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g = 8n4 (which contradicts the hypothesis that a 6= b), or s = un3k−1, m = vn3k−1 and g = n4k−1,
where n = u4 + v4 and for any integer k. It follows from (2) that

(a, b, c) = (un3k−1i, vn3k−1i, n4k−1) ,

where u 6= v.

Case 4. (r = 0, s 6= 0, t 6= 0, m 6= 0, g 6= 0, h = 0)
From (3) and (4) we obtain

t4 − 6t2m2 +m4 + s4 = g3 (8)

4t3m− 4tm3 = 0, (9)

respectively. We can rewrite (9) as 4tm(t2 − m2) = 0. Since t,m 6= 0, we must have |t| = |m|.
Substituting in (8) yields

s4 − 4m4 = g3. (10)

There are two possibilities to be considered here:

(i) |s| = |m|,

(ii) |s| 6= |m|.

Under (i) we have the following theorem, which states the form of solutions to the equation
s44m4 = g3 when |s| = |m|.

Theorem 1. The solutions to the equation x4−4y4 = z3, when |x| = |y|, are given by x = s, y = m
and z = g, where

(s,m, g) = (9n3, 9n3,−27n4),
(s,m, g) = (9n3,−9n3,−27n4).

Proof. Let x = s and y = m such that s = m, and let z = g be a solution to x4 − 4y4 = z3. We see
that

−3m4 = g3. (11)

This clearly implies that g ≡ 0 (mod 3) and g is negative. Let g = −3eu, where 3 ∧ u = 1 and
e > 1. Thus, from (11) wee that

−3m4 = −33eu3,

from which we obtain
|m| = 3

3e−1
4 u

3
4 or m = ±3

3e−1
4 u

3
4 . (12)

Since m is an integer, we must have that 3e−1
4 is an integer and there exists an integer v such that

u = v4. Thus, 3e − 1 ≡ 0 (mod 4), which on simplifying gives e = 3 + 4j for some integer j. It
follows from (12) that

m = ±32+3jv3. (13)

By (11) and (13), we obtain g3 = −3(32+3jv3)4, which on simplifying gives g = −33(3jv)4. Let
n = 3jv. Then, we will have g = −27n4, which from (13) gives m = ±9n3. Therefore, s = ±9n3.
Hence, considering that |s| = |m| (or s = ±m), we have

(s,m, g) = (9n3, 9n3,−27n4),
(s,m, g) = (9n3,−9n3,−27n4),

as asserted, with n = 3jv ∈ Z.
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Now, remembering that |t| = |m|, we have the following solutions for the system (8)–(9) under
the condition |s| = |m|:

(s, t,m, g) = (9n3, 9n3,±9n3,−27n4),
(s, t,m, g) = (9n3,−9n3,±9n3,−27n4).

This, in turn, gives us the following solutions to our original Diophantine equation:

(a, b, c) =
(
9n3i, 9n3(1± i),−27n4

)
,

(a, b, c) =
(
9n3i,−9n3(1± i),−27n4

)
.

Next, under (ii), we will show that (10) has no solutions when |s| 6= |m|. First, we state the
following result.

Lemma 1. Let u and v be integers such that u ∧ v = 1, and let (u2 − 2v2) ∧ (u2 + 2v2) = d. We
have that if u is odd, then d = 1; if u is even, then d = 2.

Proof. Let (u2 − 2v2) ∧ (u2 + 2v2) = d. Then, there exist s and t such that

u2 − 2v2 = ds and u2 + 2v2 = dt.

Suppose first that u is odd. Then, d is odd since both u2 − 2v2 and u2 + 2v2 are odd. Also,

2u2 = d(s+ t) and 4v2 = d(t− s).

Since d ∧ 2 = 1, we must have that d | u2 and d | v2. We conclude that d = 1 since u ∧ v = 1.
Suppose next that u is even. Let u = 2ew, where e is a positive integer and 2 ∧ w = 1. Then,

u2 − 2v2 = (2ew)2 − 2v2 and u2 + 2v2 = (2ew)2 + 2v2,

from which we see that

u2 − 2v2 = 2(22e−1w2 − v2) and u2 + 2v2 = 2(22e−1w2 + v2).

Now, since u ∧ v = 1, it follows that v is odd and w ∧ v = 1, and by a similar method as above, it
can be proved that

(22e−1w2 − v2) ∧ (22e−1w2 + v2) = 1.

Thus, we can clearly see that

(u2 − 2v2) ∧ (u2 + 2v2) = 2(22e−1w2 − v2) ∧ 2(22e−1w2 + v2) = 2.

Therefore, (u2 − 2v2) ∧ (u2 + 2v2) = 1 when u is odd, and (u2 − 2v2) ∧ (u2 + 2v2) = 2 when
u is even, as asserted.

We now have the following lemma which states the nonexistence of solutions for (10) under
certain particular conditions.

Lemma 2. There are no integer solutions to x4− 4y4 = z3 such that x∧ y = 1, x is odd, and y 6= 0.

Proof. Suppose there exist integers u, v and g such that u4 − 4v4 = g3, with u ∧ v = 1, u odd, and
v 6= 0. Then,

(u2 − 2v2)(u2 + 2v2) = g3.
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Since u is odd, by Lemma 1 we have (u2− 2v2)∧ (u2 +2v2) = 1, so (u2 +2v2) and (u2− 2v2) are
coprime factors of g3. Let g = ab, such that u2 + 2v2 = a3 and u2 − 2v2 = b3. Then a ∧ b = 1. We
can readily see that

a3 + b3 = 2u2, (14)

a3 − b3 = 4v2. (15)

From Cohen (2002), given that a ∧ b = 1, equation (14) has only two disjoint parameterized
solutions where u is odd, according to the following cases (up to exchange of u and v).

(a) For s, t ∈ Z such that s ∧ t = 1, s is odd and s 6≡ t (mod 3),
a = (s2 + 2t2)(5s2 + 8ts+ 2t2),
b = −(s2 + 4ts− 2t2)(3s2 + 4ts+ 2t2),
u = ±(s2 − 2ts− 2t2)(7s4 + 20ts3 + 24t2s2 + 8t3s+ 4t4).

By replacing in (15), we have

v2 = 2s(19s4−4s3t+8st3+4t4)(s4+4s3t+16s2t2+24st3+12t4)(s2+st+t2)(s+2t). (16)

Since v is an integer, at least one of the parameterized factors in (15) must be even. We can
readily see that s2 + st+ t2 must be even, since the remaining factors are odd. Upon rewriting
s2+ st+ t2 = s2+ t(s+ t), we can see that s and t(s+ t) have the same parity. Thus, t(s+ t)
should be odd, implying that t and t+s are odd. However, this is not possible since t+s would
then be the sum of two odd numbers, making it even. This is a contradiction, so this case has
no solutions.

(b) For s, t ∈ Z such that s ∧ t = 1, s 6≡ t (mod 2) and 3 - t,
a = (3s2 − 2ts+ t2)(3s2 + 6ts+ t2),
b = (3s2 − 6ts+ t2)(3s2 + 2ts+ t2),
u = ±(3s2 − t2)(9s4 + 18t2s2 + t4).

By replacing in (15), we have

v2 = 2st(81s4 − 6s2t2 + t4)(3s4 − 2s2t2 + 3t4)(3s2 + t2). (17)

First, we will prove that all the parameterized factors of (17) are pairwise coprime. Indeed, we
know that s∧ t = 1, and it is evident that s does not divide any other parameterized factors, nor
does t. Then, we only need to prove that the parenthesized factors are pairwise coprime. As an
example, we will prove the second equality; the other two have similar proofs.

Let d = (81s4 − 6s2t2 + t4)∧ (3s2 + t2), and suppose d 6= 1. Then, there exist integers α and
β such that

81s4 − 6s2t2 + t4 = dα, (18)

3s2 + t2 = dβ. (19)

Let us notice that (19) and the hypotheses impose certain restrictions on d. Indeed, we must
have 2 - d, because the left-hand-side of the equation is odd; also, 3 - d because 3 - t; finally,
d - t2 because otherwise we would have d | s2, which contradicts that s ∧ t = 1.

By multiplying (19) by −27s2 and adding (19), we have

t2(t2 − 33s2) = d(α− 27s2β).
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From this, we must have d | (t2 − 33s2). Then, there exists an integer γ such that t2 − 33s4 =
dγ. From this and (19), we have 36s2 = d(β − γ), which leads to a contradiction in light of
the restrictions imposed by (19). Thus, we must have d = 1 in this case.

Therefore, the parameterized factors on (17) are pairwise coprime. We must conclude that all
those factors are squares, except for the one that is even, i.e, s or t. In particular, we must have
that

3s4 − 2s2t2 + 3t4 = r2 (20)

for some integer r. Since s 6≡ t (mod 2), there exists an integer k such that s− t = 2k+ 1 or,
equivalently, s = 2k + t+ 1. By replacing on (20), we obtain

r2 = 48k4 + 96k3t+ 64k2t2 + 16kt3 + 4t4 + 96k3 + 144k2t+ 64kt2

+ 8t3 + 72k2 + 72kt+ 16t2 + 24k + 12t+ 3.

We can readily see that the left-hand-side of this equation has the form 4n + 3, for some
integer n, i.e., 4n + 3 = r2. However, r2 6≡ 3 (mod 4) for all r ∈ Z, which leads to a
contradiction, so this case has no solutions.

Therefore, we conclude that there are no integer solutions to x4 − 4y4 = z3 with x ∧ y = 1, x
odd, and y 6= 0.

We now prove the following result, which states the nonexistence of solutions to (10) when x∧y =
1 and x is even. Notice that these conditions automatically imply that y 6= 0. Thus, this result
is “complementary” to the previous lemma in the sense that we are considering exactly the same
hypothesis, except for the fact that x is now even.

Lemma 3. There are no integer solutions to x4 − 4y4 = z3 with x ∧ y = 1 and x even.

Proof. Suppose x = u, y = v and z = g satisfy the equation x4 − 4y4 = z3, with u ∧ v = 1 and u
an even integer. By lemma 1, we have

(u2 − 2v2) ∧ (u2 + 2v2) = 2.

Therefore, we must have (
u2 − 2v2

2

)
∧
(
u2 + 2v2

2

)
= 1.

Let u = 2ew, with e ≥ 1 and 2 ∧ w = 1. Then,

(2ew)4 − 4v4 = g3,

from which (
(2ew)2 + 2v2

) (
(2ew)2 − 2v2

)
= g3.

That is,
4
(
22e−1w2 + v2

) (
2e−1w2 − v2

)
= g3. (21)

It can be clearly seen that g is even. Hence, let

g = 2fpe11 p
e2
2 . . . pekk .

be the prime power decomposition of g, where 2 ∧ pi = 1 for i = 1, 2, . . . , k, and f > 0. Dividing
both sides of (21) by 4 we obtain(

22e−1w2 + v2
) (

2e−1w2 − v2
)
= 23f−2p3e11 p3e22 . . . p3ekk . (22)

Since f > 0, then 3f − 2 ≥ 1. Hence, the integer on the right-hand-side of (22) is even. Clearly,
since v is odd, both factors on the left-hand-side of (22) are odd, and thus the integer of the right-
hand-side should also be odd. Therefore, we have a contradiction. We conclude that there are no
integer solutions x = u, y = v and z = g to the equation x4 − 4y4 = z3 such that u∧ v = 1 and u is
even.
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The following result shows the nonexistence of solutions to (10) such that s and m are coprime.

Lemma 4. There exist no integer solutions to the equation x4− 4y4 = z3 with x∧ y = 1 and y 6= 0.

Proof. Direct consequence of Lemma 2 and Lemma 3.

Finally, we have the following theorem which states the nonexistence of solutions when |x| 6= |y|,
i.e., the main result for (ii).

Theorem 2. The equation x4 − 4y4 = z3 has no integer solutions with |x| 6= |y| 6= 0.

Proof. We will prove by contradiction. Suppose there exists a solution x = s, y = m and z = g to
this equation, with |x| 6= |y| 6= 0. We then have s4 − 4m4 = g3 with s 6= m. Let d = s ∧m, u = s

d
and v = m

d . Then u ∧ v = 1 and v 6= 0. Since d | s and d | m, we have d4 | g3. That is,

u4 − 4v4 =
g3

d4
, (23)

where g3

d4
is an integer. Let w = g3

d4
. Then, wd4 = g3, and thus g = w

1
3d

4
3 . Since g is an integer,

there exist h and k such that w = h3 and d = k3. Replacing in (23), we have u4 − 4v4 = h3. Thus,
(u, v, h) is a solution to the equation x4 − 4y4 = z3 with u ∧ v = 1. This contradicts Lemma 4.

Therefore, we conclude there are no integer solutions x = s, y = m and z = g to the equation
x4 − 4y4 = z3 with |s| 6= |m|.

Corollary 1. The equation x4 − 4y4 = z3 has integer solutions with |x| 6= |y| if and only if y = 0.
In that case, x = n3 and y = n4 for n ∈ Z.

Proof. Notice that, given the assertion of the previous theorem, it is enough to prove that there exist
solutions when y = 0. Indeed, suppose y = 0. Then, x4 = z3, which implies

x = z
3
4 . (24)

Since x is an integer, there exists an integer n such that z = n4. Replacing in (24), we have x =
n3.

Remark 1. Although the previous corollary shows there exist solutions for (10) with |s| 6= |m|, we do
not need to consider them under the context of the case we are currently studying (i.e., Case 2.4.3),
because one of the corresponding conditions is m 6= 0.

2.1 Symmetrical cases

The cases we have studied in the previous discussion were carefully chosen as representatives of
a simple algebraic analysis that can be performed on any Diophantine equation. There exist other
cases that we have left out, whose solutions can be readily found by exploiting symmetries in their
equations. In order to avoid redundancy, we have left out these case until now. Here, we present a
small summary of the results that are obtained when the symmetric equations are exploited, and we
further apply our method to solve them. Table 1 shows the results of this procedure.

3. Conclusions

In this work, we have studied the algebraic properties of the Diophantine equation x4 + y4 = z4

in Gaussian integers, for x 6= y. Our main focus has been on studying some of the conditions that
give rise to non-trivial solutions, and study their particular forms. Our findings show the existence on
infinitely many solutions.

Since the analytical method we used in this study is based on simple algebraic properties, it can
be easily generalized to study the behavior and the conditions for existence of solutions to other
Diophantine equations, allowing a deeper understanding, even when no general solution is known.

Future work on this subject will be focused on obtaining a general solution to the equation.
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Table 1: Solutions to cases considering symmetrical cases.

Conditions Symmetrical to Solutions (a, b, c)
r = 0, s = 0, t 6= 0, m = 0, g 6= 0, h = 0 Case 1 (0, n3, n4)

r = 0, s 6= 0, t = 0, m = 0, g 6= 0, h = 0 Case 1 (n3i, 0, n4)

r 6= 0, s = 0, t = 0, m = 0, g 6= 0, h = 0 Case 1 (n3, 0, n4)

r 6= 0, s 6= 0, t = 0, m = 0, g 6= 0, h = 0 Case 2 (23k+1u3(1± i), 0,−24k+2u4)

r = 0, s 6= 0, t 6= 0, m = 0, g 6= 0, h = 0 Case 3 (4n3i, 4n3, 8n4)
(un3k−1i, vn3k−1, n4k−1)

r 6= 0, s = 0, t = 0, m 6= 0, g 6= 0, h = 0 Case 3 (4n3, 4n3i, 8n4)
(un3k−1, vn3k−1i, n4k−1)

r 6= 0, s = 0, t 6= 0, m = 0, g 6= 0, h = 0 Case 3 (un3k−1, vn3k−1, n4k−1)

r 6= 0, s = 0, t 6= 0, m 6= 0, g 6= 0, h = 0 Case 4 (9n3, 9n3(1± i),−27n4)
(9n3,−9n3(1± i),−27n4)

r 6= 0, s 6= 0, t = 0, m 6= 0, g 6= 0, h = 0 Case 4 (9n3(1± i), 9n3i,−27n4)
(−9n3(1± i), 9n3i,−27n4)

r 6= 0, s 6= 0, t 6= 0, m = 0, g 6= 0, h = 0 Case 4 (9n3(1± i), 9n3,−27n4)
(−9n3(1± i), 9n3,−27n4)
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