STUDY ON THE EFFECTIVENESS OF UNIVERSAL CLEANING SOLUTION IN REMOVING PESTICIDE RESIDUES IN CAULIFLOWER

MOHD FARIDUDDIN BIN MOHD NOWOWI

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JULY 2014

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

1.1	Research background	1
1.2	Problem statement	3
1.3	Research objectives	4
1.4	Significance of study	4
1.5	Scope of study	5

CHAPTER 2 LITERATURE REVIEW

2.1	.1 Chlorpyrifos		6
	2.1.1	Metabolites of chlorpyrifos	6
	2.1.2	Toxicity of Chlorpyrifos	7
	2.1.3	Hazardous effect of chlopyrifos	8
	2.1.4	Maximum residue limits	9
2.2	Cauliflower		13
	2.2.1	Antioxidant of cauliflower	13
	2.2.2	Secondary metabolites of cauliflower	14
2.3	Removing of chlorpyrifos		15
2.4	Methods extraction		
	2.4.1 \$	Soxhlet extraction	16
	2.4.2 \$	Solid phase extraction (SPE)	17

CHAPTER 3 METHODOLOGY

3.1	Materials and equipment	
	3.1.1 Raw materials	18
	3.1.2 Reagents and chemicals	18
	3.1.3 Instrument	19
3.2	Experimental work	
	3.2.1 Preparation of universal cleaning solution	20
	3.2.2 Preparation of simulated chlorpyrifos pollution in cauliflower	20
	3.2.3 Method of cleaning samples and extraction of pesticide residues	21
	3.2.4 Preparation of blank samples	21
	3.2.5 Solid phase extraction	21
	3.2.6 Soxhlet extraction	23
	3.2.7 Gas Chromatography- Electron capture detector	24

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Analysis of residues cleaning process	25
4.2	Comparison of the effect of five cleaning solutions in removing	26
	chlorpyrifos in cauliflower with control	
	4.2.1 Tamarind juice solutions	27
	4.2.2 Flour solutions	27
	4.2.3 Vinegar solutions	28
	4.2.4 Soda- salt solutions and tap water	28
4.3	Analysis of cauliflower itself	30

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 32

CITED REFERENCES	34
APPENDICES	40
CURRICULUM VITAE	59

LIST OF TABLES

Table	Caption	Page
2.1	Maximum residue limits (MRLs) of chlorpyrifos in vegetables	10
4.1	Cocentration of chlorpyrifos in the residues cleaning process	25
4.2	Removal effect of chlorpyrifos residues after cauliflower has	26
	been washed using five type of cleaning solutions	
4.3	Remaining pesticide residues in cauliflower itself	30

ABSTRACT

STUDY ON THE EFFECTIVENESS OF UNIVERSAL CLEANING SOLUTION IN REMOVING PESTICIDE RESIDUES IN CAULIFLOWER

Nowadays, contents of pesticide residues in vegetables had become one of the hot topics closely related to human health. In order to find the effectiveness of universal cleaning solutions in removing pesticide residues in vegetables, the polluted cauliflower were washed using five types of cleaning solutions which are soda-salt solution, vinegar solution, tamarind juice solution, flour solution and tap water. Chlorpyrifos were extracted from residues cleaning process and cauliflower itself. The results had shown that tamarind juice solution had greatest removal effect between five types of cleaning solutions which have 93.04% removal rates followed by flour solution, 17.03% and vinegar solution, 11.42%. However, soda-salt solution and tap water did not have any removal effect in removing chlorpyrifos in cauliflower. Each cleaning solutions had difference removal effect in removing chlorpyrifos; the efficiency of tamarind juice solutions was significantly higher than other types of cleaning solutions; and tamarind juice solutions itself is a nonchemical substance and the preparation is very easy; therefore, the tamarind juice solution can be used as a general-purpose cleaning solution to remove pesticide residues in vegetables which can harm human health.