SOLAR PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE(DYE) BASED ON TiO_2

NORAKMALAH BINTI MOHD ZAWAWI

BACHELOR OF SCIENCE (Hons.)CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JULY 2013

TABLE OF CONTENTS

ACKNOWLEDGEMENT TABLE OF CONTENT LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT ABSTRAK			
CHA	PTER 1 INTRODUCTION		
1.1	Background	1	
1.2		6	
1.3	Objectives of study	8	
CHA	PTER 2 LITERATURE REVIEW		
2.1	Introduction	9	
2.2	Photocatalytic Degradation	9	
2.3	Factors influence the photocatalytic degradation	11	
2.4	Semiconductor	15	
2.5	Dye	17	
CHA	PTER 3 METHODOLOGY		
3.1	Materials	18	
	3.1.1 Instruments	18	
3.2	Methods		
	3.2.1 Preparation on Methylene blue sample	19	
	3.2.2 Preparation on Hydrogen Peroxide sample	19	
	3.2.3 Preparation on Metal ion sample	19	
	3.2.4 Photocatalytic Degradation Process	20	
CHA	PTER 4 RESULT AND DISCUSSION		
4.1	Standard Measurement	22	
4.2	Control Test	23	
4.3	MB Degradation Process under Different Type of Conditions	26	
	4.3.1 Degradation Efficiency of Mn^{2+} Process	28	
	4.3.2 Degradation Efficiency of Fe ²⁺ Process	29	
	4.3.3 Degradation Efficiency of Cu^{2+} Process	31	
	4.3.4 Degradation Efficiency of Co_{2+}^{2+} Process	32	
	4.3.5 Degradation Efficiency of Zn^{2+} Process	33	
4.4	Effects of Catalyst	35	
4.5	Effect of the Solar Energy to MB	35	
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS			
CITE	D REFERENCES	38	
APPE	ENDICES	42	

LIST OF TABLES

Table	Caption	Page
3.0	List of Metal Ion used in Experiment	20
4.1	Standard Measurement	23
4.2	Data Control Sample of Degradation Process	24
4.3	Data of Control Test Sample of Metal Ion under UV light	26
4.4	Data of Mn ²⁺ Degradation Efficiency	28
4.5	Data of Fe ²⁺ Degradation Efficiency	30
4.6	Data of Cu ²⁺ Degradation Efficiency	31
4.7	Data of Co ²⁺ Degradation Efficiency	32
4.8	Data of Zn ²⁺ Degradation Efficiency	33

LIST OF FIGURES

Figure	Caption	Page
1.1	Structure of Methylene blue	6
2.1	Influence of the initial MB concentration on degradation of MB.[catalyst] = 100 mg/L , natural pH values (pH = 5.3)	13
2.2	3D structure of TiO ₂	17
4.2	Control Test Sample of Degradation Process	23
4.3	Control Test Sample of Metal Ion under UV Light	26
4.4	Degradation Efficiency of Mn ²⁺	28
4.5	Degradation Efficiency of Fe ²⁺	29
4.6	Degradation Efficiency of Cu ²⁺	31
4.7	Degradation Efficiency of Co ²⁺	32
4.8	Degradation Efficiency of Zn ²⁺	33

ABSTRACT

SOLAR PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE (DYE) BASED ON TiO₂

Solar photocatalytic was a widely possibilities of energy sources that combine the solar or sunlight and chemical to acquire the chemical reaction. The reaction that produces had been identifying from this experiment. Based on this study, to remove the colour of wastewater pollution, a photocatalytic process was used to examine the rate of methylene blue (MB) degradation efficiency by using a TiO₂ as semiconductor and illuminated by solar light and UV light. The MB was used as an example of dye and the degradation process are totally depends on the MB decreasing colour. From this degradation, the chemical reaction between the semiconductor and dye can be illustrated and it undergoes the definition of solar photocatalytic itself. The chemical reaction was formed when the OH radical was attacked towards the MB or heteropolyaromatic and leading to hydroxylated metabolites. The reaction also involved when the TiO_2 semiconductor reacts with addition of energy such as solar irradiation and UV light to release heat. At this time, the holes of semiconductor trapped the ·OH radical to form a simple compound. According to the observation of experiment, the MB solution was almost completely degraded by the solar irradiation with the TiO₂ and for UV light 40% of dye was remained. Furthermore, the degradation efficiency of MB solution was higher in solar radiation than the artificial UV light even unnatural UV light consist a higher wavelength of light intensity which is 254 nm. Ahead to a photosensitization process receive and degradation efficiency encourages made this photocatalytic imputed that various visible light domain of solar irradiation was valuable for exciting the MB molecules to absorbed the TiO₂. The result revealed that MB degradation under darkness also shown some changed on the color. These have proved in the experiment where MB degradation under dark consist 15.91% degradation while under UV light and solar radiation had 63.96% and 94.27% degradation.