KINETIC AND ISOTHERM STUDIES OF COPPER(II) ADSORPTION ON POTASSIUM HYDROXIDE TREATED KENAF (*Hibiscus cannabinus L.*) FIBER

NUR SYAFIQAH BINTI AMIR HANAFIAH

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2014

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	Х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	4
1.3	Significance of study	4
1.4	Objectives of study	5
1.5	Scope of study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Copper (Cu) in the environment	
2.2	Copper removal techniques	
	2.2.1 Reverse osmosis	8
	2.2.2 Precipitation	8
	2.2.3 Flotation	9
	2.2.4 Ion exchange	9
2.3	Models of adsorption	
	2.3.1 Kinetic models	11
	2.3.2 Isotherm models	12
2.4	Agriculture plant wastes and metal adsorption studies	14
2.5	Kenaf (Hibiscus cannabinus L.) fiber	16
2.6	Chemically modified plant wastes	17

CHAPTER 3 METHODOLOGY

	3.1	Materials		24
		3.1.1	Raw material	24
		3.1.2	Reagents and chemicals	24
		3.1.3	Glassware	24
		3.1.4	Equipments and analytical instruments	25
3.2		Methods		25
		3.2.1	Sample collection	25
		3.2.2	Treatment of kenaf fiber	26

3.3	Prepa	ation of standard solutions	26
3.4	Chara	cterization of treated kenaf (Hibiscus cannabinus L.) fiber	26
	3.4.1	Determination of pH of aqueous slurry (pH _{slurry})	26
	3.4.2	Determination of zero point charge (pH _{zpc})	27
	3.4.3	Analysis infrared spectrum of adsorbent (FTIR)	27
3.5	Batch adsorption studies		27
	3.5.1	Effect of pH	28
	3.5.2	Effect of kenaf (Hibiscus cannabinus L.) fiber dosage	28
	3.5.3	Effect of initial copper(II) concentration and contact time	29
	3.5.4	Isotherm Study	29

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Adsorbent characterization	30
	4.1.1 pH _{zpc} and pH _{slurry}	30
	4.1.2 FTIR analysis	31
4.2	Effect of pH	32
4.3	Effect of adsorbent dosage	34
4.4	Effect of initial copper(II) concentration and contact time	36
4.5	Adsorption kinetic	39
	4.5.1 Pseudo-first-order model	39
	4.5.2 Pseudo-second-order model	41
4.6	Adsorption isotherm	43
	4.6.1 Langmuir isotherm	44
	4.6.2 Freundlich isotherm	46

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 48

REFERENCES	50
APPENDICES	54
CURRICULUM VITAE	68

LIST OF TABLES

Table	Caption	Page
2.1	Some advantages and disadvantages of conventional methods of copper removal	10
4.1	Amount of copper(II) removed (%) and adsorbed (mg g^{-1}) at different adsorbent dosage. [Cu]; 20 mg L^{-1}	35
4.2	The pseudo-first-order parameters at different copper concentrations	40
4.3	The pseudo-second-order parameters at different copper concentrations	42
4.4	Langmuir, Freundlich isotherm constants and correlation coefficients	47

ABSTRACT

KINETIC AND ISOTHERM STUDIES OF COPPER(II) ADSORPTION ON POTASSIUM HYDROXIDE TREATED KENAF (*Hibiscus cannabinus L.*) FIBER

Kenaf fiber which is a by-product of agricultural is easily available and relatively low cost has been investigated as an adsorbent used to remove copper(II) from aqueous solution. The adsorption of copper(II) by potassium-hydroxide-treated *Hibiscus cannabinus L*. powder (KHCLP) was investigated under batch mode. The effects of parameters such as pH, adsorbent dosage, initial copper(II) concentration and contact time were studied. Copper(II) adsorption was considered fast because the time needed to reach equilibrium was only 60 min. The adsorption kinetic data followed pseudo-second-order and the adsorption isotherm fitted Langmuir model well. According to the Langmuir model, the calculated value of maximum adsorption capacity (q_{max}) of copper(II) was 32.26 mg g⁻¹. The characteristic of KHCLP before and after adsorption of copper(II) were characterized by Fourier Transform Infrared (FTIR) spectrometer in order to understand the mechanism of adsorption. This study showed that KHCLP can be used as a good adsorbent for copper(II) removal from aqueous solution.