CONTAMINATION OF TOPSOIL WITH HEAVY METALS AND SELECTED RARE EARTH ELEMENTS AROUND GEBENG INDUSTRIAL SITE, KUANTAN PAHANG

NUR FAUWIZAH BINTI AZAHAR

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2014

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem of statement	6
1.3	Objective of Study	8
1.4	Scope of study	8
1.5	Significance of study	9

CHAPTER 2 LITERATURE REVIEW

2.1	Metal	pollution	11
2.2	Rare e	earth elements	16
	2.2.1	Lanthanum	17
	2.2.2	Thulium	17
2.3	Monito	oring techniques	18
2.4	Soil		19
2.5	Sampl	ing techniques	20
2.6	Analyt	tical techniques	22
	2.6.1	Dry ashing technique	22
	2.6.2	Wet digestion technique	23
2.7	Sample analysis		24
2.8	Statistical analysis		25
	2.8.1	Multivariate analysis	25
	2.8.2	Enrichment factor	26
	2.8.3	Contamination factor	27

CHAPTER 3 METHODOLOGY

List of chemical used	28
Study area	28
3.2.1 Gebeng, Pahang	29
Climatically	31
Sampling areas	33
	List of chemical used Study area 3.2.1 Gebeng, Pahang Climatically Sampling areas

3.5	Soil sample region	34
3.6	Sample preparation	35
3.7	Sample analysis	37
3.8	Statistical treatment and data presentation	38

CHAPTER 4 RESULT AND DISCUSSION

4.1	Valida	ation of the analytical methods	39
4.2	Spatia	al distribution of heavy metals	41
	4.2.1	Aluminium	43
	4.2.2	Fe	45
	4.2.3	Manganese	46
	4.2.4	Vanadium	47
	4.2.5	Copper	48
	4.2.6	Lead	49
	4.2.7	Nickel	51
	4.2.8	Lanthanum and Thulium	52
4.3	The D	Dutch list	55
4.4	Asses	sment of metal pollution in surface soil	58
	4.4.1	Multivariate analysis of soils data	58
	4.4.2	Correlation coefficient analysis	58
	4.4.3	Cluster analysis, CA	59
	4.4.4	Principle Component analysis	64
	4.4.5	Principle component one, PC1	67
	4.4.6	Principle component two, PC2	70
	4.4.7	Principle component three, PC3	71
4.5	Asses	sment of metal pollution in surface soil	74
	4.5.1	Geoaccumulation index, Igeo	74
	4.5.2	Contamination factor, CF	76
	4.5.3	Pollution index, PLI	79

CHAP	TER 5 CONCLUSION AND RECOMMENDATIONS
5.1	Conclusion
52	Recommendation

5.1	Conclusion	82
5.2	Recommendation	86
CIT	ED REFERENCES	87
CUR	RRICULUM VITAE	92

LIST OF TABLES

Table	Caption	Page
2.1	Characteristics of heavy metal	14
3.1	Sample collection coordination	33
4.1	Percent recoveries of nine selected elements in loam soil	40
4.2	Sampling sites and heavy metal concentrations (mg/kg)	41
4.3	Descriptive statistics for heavy metals and rare earth element	42
4.4	Comparisons between studied element and Dutch	56
4.5	Mean concentration of metal in different cities	57
4.6	Correlation coefficient of studied elements	59
4.7	Cluster membership among seven different location	60
4.8	Cluster analysis by location	61
4.9	PCA after varimax rotation	65
4.10	Initial eigenvalues and total cumulative variance	67
4.11	The Igeo class with respect to soil quality	75
4.12	Contamination scale of heavy metals	77
4.13	Contamination factor value	78
4.14	PLI status	81

ABSTRACT

CONTAMINATION OF TOPSOIL WITH HEAVY METALS AND SELECTED RARE EARTH ELEMENTS AROUND GEBENG INDUSTRIAL SITE, KUANTAN PAHANG

Surface soils are the recipients of large amount of heavy metals from a variety of sources such as industries activities, vehicles emission and other activities. In order to obtain a better understanding of the pollution from surface soil, the soil samples were randomly collected at seven locations surrounding Gebeng industrial area. The surface soil have been subjected to a total digestion technique and analysed by using atomic absorption spectrometer (AAS) and inductively coupled plasma-Mass Spectrometer (ICP-MS). The samples have been analysed for Al, V, Mn, Fe, Pb, Ni, Cu, La and Tm. The data obtained in this study showed that the mean concentration (in mg/kg) are as follows: Al (388045); Fe (1097); Mn (125.2); V (37.8); Cu (25.7); Pb (24.3); Ni (11.9); La (0.197) and Tm (0.000002). The Multivariate statistical analysis including cluster analysis (CA) and principle component analysis (PCA), contamination factor (CF), geoaccumulation index (Igeo) and pollution load index (PLI) have been calculated and were used to evaluate the distribution pattern, the contamination levels, and to detect the possible emitters of elements in the study area. The results of PCA and CA that were analyzed in this study clearly shows that the elements can be divided into three groups which are indirectly representing the three possible emitters for the deposition of these elements in the area. Fe, V, Ni, Pb and Cu for (PC1) was estimated contributed by the anthropogenic sources, La and Tm (PC2) were from natural abundance (soil and dust) and Al and Mn (PC3) were released by various possible sources. The Igeo-accumulation index of these metals in the surface soil under this study indicates that all the studied metal are falls under contaminated to extremely contaminated. Overall observations showed that Fe, La and Tm is uncontaminated and was expected occurred naturally in the earth crusts. Contamination Factor values indicate that all sampling locations are suffered moderate contamination to extreme contamination by all metals except Fe, La and Tm. The pollution load index (PLI) measured in this study clearly shows that all the sampling stations were polluted with the studied elements in various levels.