ASSESSMENT DEGRADATION OF DYE (CONGO RED) BY FENTON'S REAGENT PROCESS WITH LIGHT AND WITHOUT LIGHT

NUR ASMAHIDAYU BINTI AHMAD KAMAL

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2014

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	xi
ABSTRAK	xii

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	5
1.3	Objective of study	6
1.4	Significance of study	6
1.5	Scope of study	7

CHAPTER 2 LITERATURE REVIEW

2.1	Advanced oxidation process (AOP)	8
2.2	Degradation	9
2.3	Fenton's reagent process	10
2.4	Factors affecting Fenton process	11

CHAPTER 3 METHODOLOGY

3.1	Materials	12
3.1.1	Chemicals and reagents	13
3.1.2	Glassware	13
3.1.3	Equipment and analytical instruments	13
3.2	Methods	14
3.2.1	Sample preparation	14
3.2.1.1	Preparation of Congo red (CR) as dye pollutions	14
3.2.1.2	Preparation of Na ₂ CO ₃ solution	14
3.2.1.3	Preparation of K ₂ CO ₃ solution	15
3.2.1.4	Preparation of NaNO ₃ solution	15
3.2.1.5	Preparation of NaCl solution	16

3.2.1.6 Preparation of H_2SO_4 (0.02 M)	16
3.2.1.7 Preparation of H_2O_2 (10-3M)	16
3.2.2 Analytical procedures	17
3.2.2.1 Fenton's reagent process under UV-lamp without adding scavenger	17
3.2.2.2 Fenton's reagent process in dark place without adding scavenger	18
3.2.2.3 Fenton's reagent process in room temperature without adding scavenger	18
3.2.2.4 Fenton's reagent process under UV-lamp with addition scavenger	19
3.2.2.4 Fenton's reagent process at dark place with addition scavenger	20

CHAPTER 4 RESULT AND DISCUSSION

4.1	Fenton's reagent process without addition of scavenger	21
4.2	Fenton's reagent process with addition of scavenger	25
4.2.1	Scavenger effect (UV-lamp)	26
4.2.2	Scavenger effect (dark place)	28

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusions	31
5.2	Recommendations	32

REFERENCES	33
APPENDIXES	35
CURRICULUM VITAE	37

LIST OF TABLE

Table	Caption	Page
4.1	Percentage degradation of CR dye under UV-lamp	22
4.2	Percentage degradation of CR dye at room temperature	23
4.3	Percentage degradation of CR dye at dark place	23
4.4	Average concentration of CR dye after scavenger added	
	(UV-lamp)	26
4.5	Percentage degradation of CR dye after scavenger added	
	(UV-lamp)	27
4.6	Average concentration of CR dye after scavenger added	
	(dark place)	28
4.7	Percentage degradation of CR dye after scavenger added	
	(dark place)	29

ABSTRACT

ASSESSMENT DEGRADATION OF DYE BY FENTON'S REAGENT PROCESS WITH LIGHT AND WITHOUT LIGHT

Development of textile industry will generate a huge amount of effluent from this industry. These effluents can contaminate the environment especially water. They also very toxic and can cause cancer. Because of that, a research must be conduct to find the solution for this problems. This paper consists of a method in treating dye wastewater called Fenton's reagent (reaction from hydrogen peroxide, H₂O₂ and ferrous ion). This experiment was handled in two ways which is in presence of light and without ontribution of any light (dark place). Congo red (CR), a common dye in this industry is used to act like wastewater. The results found that Fenton's reagent process is very effective in oxidising dye wastewater, but the presence of scavengers will retart the effectiveness of this process. The higher the concentration of scavengers, the lesser the effectiveness of the Fenton's reagent process and vice versa. The presence of visible light will increase the effectiveness of this Fenton's reagent process. This experiment also found that CO_3^{2-} is the strongest radical $\cdot OH$ scavenger.