Er-Yb CO-DOPED SiO₂-P₂O₅ MONOLITHIC NANO - COMPOSITE SYNTHESIZED BY THE SOL GEL ROUTE

MUHAMMAD RIDHUAN SHAHRIMAN B MOHD RADZI

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2014

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	X
CHAPTER 1 INTRODUCTION	
1.1 Background of study	1
1.2 Problem statement	
1.2.1 The role of Ytterbium as co-dopant	6
1.2.2 The role of Erbium as an amplifier	8
1.2.3 Erbium-Ytterbium co-doping	10
1.2.4 The relevance of the sol-gel method	11
1.2.5 Optimization of the glass component: Er concentration	13
1.2.6 Optimization of the glass component: Yb concentration	14
1.3 Objectives of study	16
1.4 Significance of study	16
CHAPTER 2 LITERATURE REVIEW	
2.1 Introduction	17
2.2 Optical waveguide	19
2.3 Issues with the sol-gel method	21
2.4 Luminescence up-conversion effect	22
CHAPTER 3 METHODOLOGY	
3.1 Overview	25
3.2 Co-doping process	27
3.3 Heat treatment	28
3.4 Summary	29
3.5 Characterization	
3.5.1 Scanning Electron Microscope, SEM	30
3.5.2 Fourier-Transform Infrared, FTIR	31

CHAPTER 4 RESULTS AND DISCUSSION	
4.1 Discussion	
4.2.1 SEM micrograph result	32
4.2.2 FTIR spectral analysis	37
4.3 Sample preparation discussion	42
CHAPTER 5 CONCLUSION AND RECOMMENDATION	
5.1 Conclusions	45
5.2 Recommendation	46
CITED REFERENCES	48
APPENDICES	51
CURRICULUM VITAE	54

LIST OF TABLES

Table	Caption	Page
3.1	The amount of substances and materials that are used	26
APPENDIX A	Percentages by weight for the three samples	51

ABSTRACT

Er-Yb CO-DOPED SiO₂-P₂O₅ MONOLITHIC NANO COMPOSITE SYNTHESIZED BY THE SOL-GEL ROUTE

A silica phosphate glass doped with Erbium and Ytterbium was produced by using sol-gel method. The sol-gel method is more preferred in synthesizing doped SiO₂-P₂O₅ as the method allows the bonding of the dopant in a molecular level, which conventional melt-quench method does not. Three samples were prepared, by which the constant variable is the Erbium doping concentration (in mol percent), and the manipulated variable is the Ytterbium doping concentration of 1, 2, and 3 mol percent. Analysis result from the Scanning Electron Microscope, SEM and the Fourier-Transform Infrared, FT-IR shows very promising result, proving that the heavy metal doping does appear on the surface of the glass. The IR spectrum on the other hand shows the physical structures of the SiO₂-P₂O₅ in their distinctive bandings and vibrations. However, all three samples suffered a serious case of cracking bordering shattering, which is due to the lack of proper climate control equipment necessary to control the room temperature which in this environment would accelerate the drying phase and thus preventing the SiO₂-P₂O₅ particle to cluster together fast enough as the particle separates itself from host material and other solvents as it dries.