

MEC 332

MECHANICAL ENGINEERING DESIGN

FINAL YEAR PROJECT

TITLE:

MEMO 1 MECHANICAL SICKLE (SUPER SCYTHE)

SUPERVISOR'S NAME:

MADAM NURULSAIDATULSYIDA BINTI SULONG

LECTURER'S NAME:

SIR MOHD NOOR HALMY AB LATIF

GROUP:

J4EM1105B (B4)

TEAM MEMBERS:

NO.	NAME	MATRIX NUMBER
1	MOHAMMAD HAZRIF	2018213738
2	ANIQ FARID BIN MD ROSMANIZAM	2018658598
3	MUHAMMAD IRFAN HAIKAL BIN SIDIK	2018279398
4	ZAHIN FIKRI BIN HAIRUNIZAM	2018634464

NO.	TITLE	PAGE
1	1.0 INTRODUCTION	6-13
	1.0.1 ACKNOWLEDEMENT	6
	1.0.2 ABSTRACT	7
	1.1 OVERVIEW OF THE PROJECT	8
	1.2 DESIGN OBJECTIVE	9
	1.3 SCOPE OF PROJECT	10
	1.4 SIGNIFICANCE OF PROJECT	11-12
	1.5 PROJECT PLANNING	13
	2.0 PROBLEM DEFINITION	14-24
	2.1 PROBLEM STATEMENT	14
	2.2 NEED IDENTIFACTION	15-22
	2.2.1 TARGETED MARKET AND ESTIMATION OF	15-16
	MARKET SIZE.	
	2.2.2 NEED IDENTIFICATION	17-21
	2.2.3 CUSTOMERS REQUIREMENTS	22
	2.3 PRODUCT DESIGN SPECIFICATION	23-24
	3.0 LITERATURE REVIEW	25-27
	4.0 CONCEPT GENERATION AND EVALUATION	28-38
	4.1 MORPHOLOGICAL CHART	28-36
	4.2 PUGH CHART	37
	4.3 DECISION / EVALUATION CRITERIA	38
	5.0 EMBODIMENT OF DESIGN	39-46
	5.1 SCHEMATIC DIAGRAM	39
	5.2 GEOMETRIC LAYOUT	40
	5.3 CONFIGURATION DESIGN.	41
	5.4 LIST OF PARTS	42
	5.4.1 DETAIL PARTS SELECTION	42-44

TABLE OF CONTENT

6.0 DETAILED DESIGN 6.1 ENGINEERING DRAWING DESIGN 6.2 ASSEMBLY DRAWING 6.3 EXPLODED DRAWING	47-62 47-53 54-56
6.1 ENGINEERING DRAWING DESIGN 6.2 ASSEMBLY DRAWING	47-53
6.2 ASSEMBLY DRAWING	
	54-56
(2 EVDI ODED DD A WING	2.20
0.5 EAPLODED DRAWING	57
6.4 BILL OF MATERIAL AND COSTING	58
6.4.1 VARIABLE COST	58-60
6.4.2 FIXED COST	61
6.5 COST ANALYSIS	62
7.0 PROTOTYPING	63-68
7.1 FABRICATION DETAIL	63-64
7.2 PRODUCT MANUAL	65-66
7.3 PRODUCT TESTING	67
7.3.1 TENSILE STRENGTH TESTING	67
7.3.2 DUCTILITY TESTING	68
7.3.3 TORSION TESTING	68
8.0 CONCLUSION AND RECOMMENDATION	69-72
8.1 CONCLUSION	69-70
8.2 RECOMMENDATION	71-72

1.0 INTRODUCTION

1.0.1 ACKNOWLEDEMENT

We would like to thank my supervisor, Madam Nurulsaidatulsyida Binti Sulong, for her unwavering support and encouragement during our project. It's been a privilege to work with her because she always pointed us in the right direction when we needed it, and we were able to complete our project successfully with her encouragement and help.

We would like to express our gratitude to our parents, who are the source of our inspiration. Their unwavering love and guidance enabled us to build this task with good communication and cooperation.

Last but not least, we would like to express our sincere gratitude to our Diploma in Mechanical Engineering classmates for their support during the project.

1.0.2 ABSTRACT

Super Scythe is a revolutionary prototype that was inspired by the traditional sickle and grass-cutting machine that people use to cut grass as well as other types of grass. Farmers usually use these tools to clean their farms or maintain a lovely landscape.

We invent and introduce some different to the Super Scythe in terms of safety, materials, and design to fulfil the objective and easier to use in any situation.

The aim is to demonstrate the functionality of the Super Scythe, which incorporates two main features into one completely functional sickle: a sickle and a grass-cutting machine.

When the user applies force to the handle grip, the stick sickle will shift to the right-hand side and then return to its original position on the left-hand side when it reaches the maximum area.

This prototype was created to upgrade the old system to make it more user-friendly and competitive in terms of design by introducing a new adjustable stick that allows the user to alter the length of the stick according to personal preference.

The sickle blade, which is connected to the end of the handle, will mow the grass.

The design that can enhance the design specification was overwhelmingly selected by the majority of people who responded to our survey.

We hope that the presence of the prototype will have a significant effect on people who want to purchase and use our product in the best possible way