UNIVERSITY TEKNOLOGI MARA

PHYSICAL AND MECHANICAL PROPERTIES OF THREE-LAYER PARTICLEBORAD FROM OIL PALM FROND (OPF)

NORFAZLINA BINTI ZAINAL

Thesis submitted in fulfillment of the requirements

For the

Bachelor of furniture technology

Faculty of applied sciences

May 2011

TABLE OF CONTENTS

Title		Page			
APPROVAL SHEET		i			
ACKNOWLEDGEMENTS					
LIST OF TABLES		vi			
LIST OF FIGURE		viii			
LIST OF PLATE		xi			
LIST OF ABBREVIATIONS		x			
ABSTRACT		xi			
CHAPTER I					
	INTRODUCTION				
1.1	Composite	1			
1.2	Problem Statement	3			
1.3	Objectives	3			
CHAPTER I	CHADTED H				
	LITERATURE REVIEW				
2.1	Oil Palm	4			
	2.1.1 Botanical Classification	8			
	2.1.2 Field Characters	8			
	2.1.3 Utilization of Oil Palm Biomass	9			
	2.1.4 Oil Palm Frond (OPF)	11			
2.2	Particleboard	12			
	2.2.1 History of Particleboard	14			
	2.2.2 Properties of Particleboard	15			
	2.2.2.1 Effect of Particle Size	15			
	2.2.2.2 Particle Distribution between Face and Back	16			
	2.2.2.3 Effect of Resin Content	16			
	2.2.2.4 Effect of Wax Addition	17			
	2.2.2.5 Utilization of Particleboard	17			
2.3	History and Development	17			
2.4	Impact on Timber Resources and The Environment	18			
2.5	Adhesive	19			
CHAPTER I					
	MATERIAL AND METHOD				
3.1	Preparation of Raw Material	21			
	3.1.1 Oil Palm Frond (OPF)	21			
	3.1.2 Adhesive	22			
3.2	Preparation of Particleboard	22			
3.3	Panel Testing	26			

3.3.2 Determination of Bending Strength Test (MOR	28
and MOE)	
3.3.3 Determination of Internal Bonding	29
3.3.4 Determination of Water Absorption	30
3.3.5 Determination of Thickness Swelling	30
CHAPTER IV	
RESULTS AND DISCUSSION	
4.1 Density	31
4.2 Bending Strength	32
4.3 Internal Bonding	34
4.4 Water Absorption	35
4.5 Thickness Swelling	36
CHAPTER V	
CONCLUSION AND RECOMMENDATION	
5.1 Conclusion	38
5.2 Recommendation	38
REFERENCES	39
APPENDICES	41
VITAE	68

LIST OF FIGURES

Figures		Page
1	Flow Chat of Producing Panel Follow Japanese Industrial	24
	Standard A 5908:2003.	
2	Sample of cutting board.	25
3	MOR and MOE testing method.	28
4	Internal bonding test.	29
5	Modulus of rupture (MOR) of three-layer particleboard from oil	33
	palm frond for different resin content ratio.	
6	Modulus of elasticity (MOE) of three-layer particleboard from oil	33
	palm frond for different resin content ratio.	
7	Internal Bonding strength of three-layer particleboard from oil	34
	palm frond for different resin content ratio.	
8	Water Absorption of three-layer particleboard from oil palm	35
	frond for different resin content ratio with addition of wax.	
9	Water Absorption of three-layer particleboard from oil palm	36
	frond for different resin content ratio without addition of wax.	
10	Thickness swelling of three-layer particleboard from oil palm	37
	frond for different resin content ratio with addition of wax.	
11	Thickness swelling of three-layer particleboard from oil palm	37
	frond for different resin content ratio without addition of wax.	

PHYSICAL AND MECHANICAL PROPERTIES OF THREE LAYER PARTICLEBOARD FROM OIL PALM FROND

Abstract

This study was undertaken to determine the properties of three layered particleboard from oil palm frond (OPF) with different ratio resin contain and particle sizes within face/back and core. Four different ratio of resin contain; 12:10:12, 12:8:12, 10:10:10 and 10:8:10 were used with particle size for core; 2mm and face/back; 1mm. Urea Formaldehyde (UF) was used as a binder with addition of wax and without wax. The target density was 500kg/m³. The properties of bending strength, internal bonding (IB), thickness swelling (TS) and water absorption (WA) were evaluated base on JIS standard. From the result, it shown that MOR and MOE value were perform better with particleboard using ratio 12:8:12 bonded with UF without wax. The IB strength was parallel with bending strength except for board using 12:10:12 ratio bonded using UF with addition of wax. TS and WA rate showed lower in particleboard using resin contain within the layered affected the properties of particleboard manufactured from OPF.