PRODUCTION OF BIODIESEL USING POTASSIUM HYDROXIDE SUPPORTED ON ALUMINA (KOH/Al₂O₃)

NAILUL AMAL BINTI ZAKARIAH

Final Year Project Report Submitted in Partial Fulfilment of the Requirement For The Degree Bachelor of Science (Hons.) Chemistry In The Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT ABSTRAK		iv v vii viii ix x x
CHA	APTER 1 INTRODUCTION	1
1.1	Background of study	1
1.2	Problem statement	4
1.3	Significance of study	5
1.4	Objectives of study	6
CHA	APTER 2 LITERATURE REVIEW	7
2.1	Type of catalysts	7
2.2	Calcination temperature	10
2.3	Methanol to oil ratio	11
2.4	Reaction temperature	12
2.5	Methods of biodiesel production	14
CHA	APTER 3 METHODOLOGY	16
3.1	Materials	16
3.2	Apparatus	16
3.3	Instrumentation	17
3.4	Catalyst preparation	17
3.5	Catalyst characterization	17
3.6	Transesterification reaction	18
3.7	Reusability test	20
3.8	Gas Chromatography (GC) analysis	20
CH A 4.1 4.2	APTER 4 RESULTS AND DISCUSSION Characterization of KOH/Al ₂ O ₃ catalyst The effect of transesterification parameters 4.2.1 The effect of catalyst loading 4.2.2 The effect of reaction time	22 22 25 25 29
4.3	Reusability test	32

CHAPTER 5 CONCLUSION AND RECOMMENDATION	
5.1 Conclusion	33
5.2 Recommendation	33
REFERENCES	
APPENDICES	
CURRICULUM VITAE	

LIST OF FIGURES

Figure	Caption	Page
1.1	Transesterification process	2
4.1	TGA and DTG curve for KOH/Al ₂ O ₃ .	22
4.2	The effect of the catalyst loading on the yield (10% KOH- Al_2O_3 , 12:1 MeOH:oil, 65°C temperature and 3 hours reaction.	24
4.3	GC-MS chromatogram for biodiesel obtained by using 7 wt.% catalyst (10% KOH-Al ₂ O ₃ , 12:1 MeOH:oil, 65°C temperature and 3 hours reaction).	25
4.4	The effect of reaction time on the yield (10% KOH-Al ₂ O ₃ , 12:1 MeOH:oil, 65°C temperature and 7 wt.% catalyst.	28
4.5	GC-MS chromatogram of biodiesel for 2 hours reaction (10% catalyst concentration, 12:1 MeOH:oil, 65°C temperature and 7 wt.% catalyst)	29
4.6	The reusability of the catalyst.	30

ABSTRACT

PRODUCTION OF BIODIESEL USING POTASSIUM HYDROXIDE SUPPORTED ON ALUMINA (KOH/Al₂O₃)

In this study, waste cooking oil (WCO) was used to produce biodiesel using KOH supported onto alumina (KOH/Al₂O₃) as catalyst. Three parameters were studied to find the optimum conditions which are catalyst loading, reaction time and the reusability of the catalyst. Al₂O₃ was impregnated with KOH and characterized using thermogravimetric analyzer (TGA) before the catalyst was calcined at 700°C for 3 hours. The reaction was refluxed with constant conditions at temperature of 65°C, 10% KOH-Al₂O₃, methanol to oil ratio of 12:1 for 3 hours. The reaction time was studied using optimum catalyst loading which is 7 wt.% catalyst amount and the reaction was varied from 1 hour - 4 hours reaction. The highest yield of biodiesel obtained was 73.7% in 2 hours of reaction. At the end of the study, the reusability of the catalyst was studied. 3 cycles of reaction was done using used catalyst from the previous reaction of 2 hours yield determination and found the decreasing pattern of yield after 4 cycles of reaction. Hence, the optimal conditions for this catalyst were reaction temperature at 65°C, 10% KOH-Al₂O₃, methanol to oil ratio of 12:1, 7 wt.% catalyst loading at 2 hours reaction time with the highest yield of biodiesel is 73.7%.