UNIVERSITI TEKNOLOGI MARA

DEVELOPMENT OF MICROCONTROLLER BASED POTENTIOMETRIC INDICATOR SYSTEM USING SURFACE MOUNT COMPONENT.

MOHD FIRDAUS BIN ABDULLAH

Thesis submitted in fulfillment of the requirements

for the degree of

Master of Science

Faculty of Electrical Engineering

January 2012

AUTHOR'S DECLARATION

I declare that the work in the thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree of qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Mohd Firdaus b Abdullah
Student ID No.	t	2008290238
Programme	:	Master of Science (EE780)
Faculty	÷ •	Faculty of Electrical Engineering
Thesis Title	:	Development of Microcontroller Based Potentiometric Indicator System Using Surface Mount Component
Signature of Student	:	
Date	:	January 2012

ABSTRACT

The thesis reported the development of microcontroller based potentiometric indicator system using surface mount component. Methods based on salivary amylase activity to quantify the psychological stress have reported successes. There was a need for a non-invasive method to assist the individual in monitoring stress since stress is now the leading cause of diseases. The purpose of this research was to develop of microcontroller based potentiometric indicator system for a salivary biosensor using surface mount component. The purpose system involved the integration between hardware and software subsystem. For hardware subsystem, the design of potentiometric circuit was tested with theoretical computation, simulation on P-spice software and breadboard circuit. Then, the design was fabricated for printed circuit board and surface mount technology. This finding was then used to develop interface for the analog-to-digital converter. For software subsystem, the stress level indicator system has been developed using PIC 16F873 by converting the output from potentiometric circuit into stress level with a look-up table based on fuzzy rule sets for measuring human stress. It computes the digital data conversion into desired reading and displays data through the second hardware subsystem which is liquid crstal display. A potentiometric indicator for a piezoresistive MEMS biosensor to detect human stress was developed. It was comprised of a potentiometric transduction stage, filtering stage and linearization stage. From the experiment, it was shown that the potentiometric indicator designed was able to report changes in the amount of glucose in a different solution. The integration of the piezoresistive microcantilever biosensor with the potentiometric indicator system will have a significant impact on the practice of sensor integration with circuit minitarization.

ACKNOWLEDGEMENTS

I am very gratitude to the Almighty God for the strength, wisdom, patience, motivation, creativity and ability bestowed to complete this project.

I would like to express my sincerest and deepest appreciation and thanks to my supervisor, Associate Prof Dr. Lee Yoot Khuan, my co-supervisor Mdm. Nina Korlina Madzhi and Prof Dr. Anuar Ahmad for their assiduous guidance and assistance throughout the length of this research.

My deepest and warmest gratitude to my lovely parents, En. Abdullah b Che Hin and Pn. Siti Esah bt Md Lazim, for their inspiration and moral support, and my family for being so understanding and supporting. Also, special thanks to En. Wan Abu Bakar Ngah who has given ideas and help for completing this project.

I also would like to extend my appreciation to the Minister of Science and Technology (MOSTI), Universiti Teknologi MARA Shah Alam of Electrical Engineering, UiTM for providing the laboratory facilities, resources and financial assistance.

Last but not least, I also like to thank my friends for their help and assistance. Lastly, I would like to express my sincere appreciation to the people who have directly and indirectly contributed to the successful completion of this project. Only Allah SWT could repay their kindness.

TABLE OF CONTENTS

		Page
AUT	HOR'S DECLARATION	ii
ABST	TRACT	iii
ACK	NOWLEDGEMENTS	iv
TABI	LE OF CONTENTS	v
LIST	OF TABLES	ix
LIST	OF FIGURES	xi
LIST	OF PLATES	xili
LIST	OF ABBREVIATIONS	xiv
CHA	PTER 1: INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Objective of Project	2
1.4	Scope of Work	3
1.5	Dissertation Layout	4
CHAI	PTER 2: LITERATURE REVIEW	6
2.1	Introduction	6
2.2	Overview of Stress Measurement Method	7
2.3	Stress Measurement Based on Alpha Amylase	9
	2.3.1.Introduction	9
	2.3.2.Salivary α-Amylase based Human Stress Measuremen	11
	2.3.3.Piezoresistive MEMS Biosensor	12
	2.3.4.Potentiometric indicator	14
2.4	Intelligent Indication System for Biomedical Application	16
	2.4.1. Introduction	16
	2.4.2. Fundamental of Fuzzy Logic	17
	2.4.3. Application of Fuzzy Logic in Biomedical Engineering	18
2.5	Minituarization in Wearable Health System	19
2.6	Summary	21