UNIVERSITI TEKNOLOGI MARA

FREE SPACE MICROWAVE MEASUREMENT OF PERMITTIVITY OF GATE DIELECTRIC FOR SEMICONDUCTOR TECHNOLOGY

FATIMAH 'AUDAH MD. ZAKI

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

Faculty of Electrical Engineering

January 2012

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledge as reference work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	\$	Fatimah 'Audah Md. Zaki		
Student I.D. No.	\$	2009610648		
Programme	*	Master of Science in Electrical Engineering		
Faculty	*	Faculty of Electrical Engineering		
Thesis Title	\$	Free-Space Microwave Measurement of		
		Permittivity of Gate Dielectric for Semiconductor		
		Technology		
Signature of Candidate	:			
Date		31 st January 2012		

ABSTRACT

A non-destructive and non-contacting technique for measuring the relative permittivity of an epitaxial layer on semiconductor has been developed. The samples were thermally grown SiO₂ of different dopants and thicknesses. The measurement set up consists of spot-focusing horn antennas and a vector network analyzer for measuring the reflected signals in free space. By applying some calculations, the dielectric constants and other electrical properties of silicon dioxide can be obtained. Results for p- and n-type SiO₂ are reported in the frequency range of 18 to 26 GHz.

This measurement technique is able to differentiate between doped and undoped materials. It was found that the doped SiO_2 layer absorbed more signals than the undoped ones due to different conductivity values as the result of dopant addition. Moreover, different result is shown by n- and p-type wafers which are caused by depletion and pile-up effect in the semiconductor as the outcome of the oxidation of silicon surface. The dielectric constants of the SiO_2 films were found to be approximately 3.8 at 22 GHz, which agrees with other researchers.

The research also found that this method can distinguish different oxide thicknesses, where fewer signals are being reflected for thicker oxides. It was observed that the S_{11} reduction is insignificant for oxide thickness greater than the skin depth. Furthermore, the conductivity and loss tan of SiO₂ increases with increasing oxide thickness. The method is able to measure relative permittivity of double-layered dielectric or media, provided the layer thickness does not exceed skin depth. This shows that the measurement technique is reliable because it is sensitive to the properties of the epitaxial layer only.

ACKNOWLEDGEMENTS

I would like to thank the staff and students of Semiconductor Laboratory, Faculty of Applied Science for their assistance and guidance in preparing the samples for this project, and also to Dana Kecemerlangan for the fund.

I also have been blessed with a very supportive husband, who never fails to listen and give encouragements. To my family; my father and my siblings, thank you for lending your ears and advices.

TABLE OF CONTENTS

TITLE PAGE	i
CANDIDATE'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	
LIST OF PLATES	xii
LIST OF ABBREVIATIONS	
LIST OF SYMBOLS	xiv
	y
CHAPTER ONE: INTRODUCTION	
1.1 Introduction	1
1.2 Problem Statement	4
1.3 Objectives	6
1.4 Scope of Research	6
1.5 Significance of Study	7
1.6 Organization of Thesis	8
CHAPTER TWO: LITERATURE REVIEW OF DIELECTR	SIC 9
MATERIAL CHARACTERIZATION	
METHODS	
CHAPTER THREE: THEORY OF MICROWAVES AND	
SEMICONDUCTOR	

3.1	Attributes of Microwave Non-Destructive Testing	16
3.2	Scattering Parameters	17