Quest for Research Excellence On Computing, Mathematics and Statistics

Editors
Kor Liew Kee
Kamarul Arififin Mansor Asmahani Nayan Shahida Farhan Zakaria

Zanariah Idrus

Quest for Research Excellence on Computing, Mathematics and Statistics

Chapters in Book

The $2^{\text {nd }}$ International Conference on Computing, Mathematics and Statistics (iCMS2015)

Editors:

Kor Liew Lee
Kamarul Ariffin Mansor
Asmahani Nayan
Shahida Farhan Zakaria
Zanariah Idrus

Quest for Research Excellence on Computing, Mathematics and Statistics

Chapters in Book

The $2^{\text {nd }}$ International Conference on Computing, Mathematics and Statistics
(iCMS2015)
4-5 November 2015
Langkawi Lagoon Resort
Langkawi Island, Kedah
Malaysia

Copyright © 2015 Universiti Teknologi MARA Cawangan Kedah

All rights reserved, except for educational purposes with no commercial interests. No part of this publication may be reproduced, copied, stored in any retrieval system or transmitted in any form or any means, electronic or mechanical including photocopying, recording or otherwise, without prior permission from the Rector, Universiti Teknologi MARA Cawangan Kedah, Kampus Merbok, 08400 Merbok, Kedah, Malaysia.

The views and opinions and technical recommendations expressed by the contributors are entirely their own and do not necessarily reflect the views of the editors, the Faculty or the University.

Publication by
Faculty of Computer \& Mathematical Sciences
UiTM Kedah

Content

International Scientific Committee
Preface
CHAPTER 1 1
Towards Ameliorating the Problem of Packet Dropping in IDS using P System Model on GPU
Rufai Kazeem Idowu, Ravie Chandren M., and Zulaiha Ali Othman
CHAPTER 2 11
Analyses of Software Testing Problems in Small and Medium Software Enterprises (SME's) and a Proposed Framework on Exploratory Testing
Murugan Thangiah and Shuib Basri
CHAPTER 3 25
Senior Citizen and Online Form: Hybrid Guideline Form Design
Zanariah Idrus, Nor Hafizah Abdul Razak, and Noor Hasnita Abdul Talib
CHAPTER 4 35
Research Paradigms in Computing Disciplines: A Review
Nor Hafizah Abdul Razak, Noor Hasnita Abdul Talib, and Jasmin Ilyani Ahmad
CHAPTER 5 41
Dijkstra's Algorithm In Product Searching System (Prosearch)
Nur Hasni Nasrudin, Siti Hajar Nasaruddin, Syarifah Syafiqah Wafa Syed Abdul Halim and Rosida Ahmad Junid
CHAPTER 6 49
Developing Waqf Land Computing: A Preliminary Study On The Used Of Web-based Applications And Spatial Database
Siti Nurbaya Ismail, Zanariah Idrus, Nor Hafizah Abdul Razak
CHAPTER 7 59
Implementation Of CORDIC Algorithm In Vectoring Mode
Anis Shahida Mokhtar, Abdullah bin Mohd Fadzullah
CHAPTER 8 71
A Description of Projective Contractions in the Orlicz- Kantorovich Lattice
Inomjon Ganiev and M. Azram
CHAPTER 9 83
The Geometry of the Accessible Sets of Vector Fields
A.Y.Narmanov, and I. Ganiev
CHAPTER 10 89
Existence Result of Third Order Functional Random Integro- Differential Inclusion
D. S. Palimkar
CHAPTER 11 105
Fourth Order Random Differential EquationD. S. Palimkar and P.R. Shinde
CHAPTER 12 115
New Concept of $e-I$-open and $e-I$-Continuous Functions
W.F. Al-omeri, M.S. Md. Noorani, and A. AL-Omari
CHAPTER 13 123
Visualization of Constrained Data by Rational Cubic Ball Function
Wan Zafira Ezza Wan Zakaria, and JamaludinMd Ali
CHAPTER 14 133
Octupole Vibrations in Even-Even Isotopes of DyA.A. Okhunov, G.I. Turaeva, and M. Jahangir Alam
CHAPTER 15 141
Characterization of p-Groups with a Maximal Irredundant 10- Covering
Rawdah Adawiyah Tarmizi and Hajar Sulaiman
CHAPTER 16 149
Sensitivity Index of HIV-1 model Parameters with Vertical transmission
Amiru Sule, Mamman Mamuda, Abdullahi Mohammed Baba, Jibril Lawal, and I.G. Usman
CHAPTER 17 163
Derivation of Four-Point Explicit Block Methods for Direct Solution of Initial Value Problems of Third Order Ordinary Differential Equations
Z. Omar, J. O. Kuboye, and Y.A. Abdullah
CHAPTER 18 175
Absolute Translativity of Generalized Nörlund Mean
Amjed Zraiqat
CHAPTER 19 189
Type I Error of the Modified Wilcoxon Signed Rank Test under Leptokurtic Distribution
Nor Aishah Ahad, Sharipah Soaad Syed Yahaya, Suhaida Abdullah, Lim Yai Fung and Zahayu Md Yusof
CHAPTER 20 199
The Combined EWMA-CUSUM Control Chart with Autocorrelation
Abbas Umar Farouk, and Ismail Bin Mohamad
CHAPTER 21 213
Estimating Philippine Dealing System Treasury (PDST)
Reference Rate Yield Curves using a State-Space Representation of the Nelson-Siegel Model
Len Patrick Dominic M. Garces, and Ma. Eleanor R. Reserva
CHAPTER 22 225
A Structural Equation Model Analyzing the Relationship Model on Perception Students toward Mathematics
Siti Fairus Mokhtar
CHAPTER 23 233
Partial Least Squares Based Financial Distressed Classifying Model of Small Construction Firms
Amirah-Hazwani Abdul Rahim, Ida-Normaya M. Nasir, Abd-Razak Ahmad, and Nurazlina Abdul Rashid
CHAPTER 24 245
Logit Bankruptcy Model of Industrial Product Firms
Asmahani Nayan, Siti-Shuhada Ishak, and Abd-Razak Ahmad
CHAPTER 25 255
Data Mining in Predicting Firms Failure: A Comparative Study Using Artificial Neural Networks and Classification and Regression Tree
Norashikin Nasaruddin, Wan-Siti-Esah Che-Hussain, Asmahani Nayan, and Abd-Razak Ahmad
CHAPTER 26 265
Risks of Divorce: Comparison between Cox and Parametric Models
Sanizah Ahmad, Norin Rahayu Shamsuddin, Nur Niswah Naslina Azid @ Maarof, and Hasfariza Farizad
CHAPTER 27 277
Reliability and Construct Validity of DASS 21 using Malay
Version: A Pilot Study
Kartini Kasim, Norin Rahayu Shamsuddin, Wan Zulkipli Wan Salleh, Kardina Kamaruddin, and Norazan Mohamed Ramli
CHAPTER 28 285
Outlier Detection in Time Series Model
Nurul Sima Mohamad Shariff, Nor Aishah Hamzah, and Karmila Hanim Kamil
CHAPTER 29 297
ROAD Algorithm for Control Charts
Gejza Dohnal
CHAPTER 30 311
Learning Numerals for Down Syndrome by applying Cognitive Principles in 3D Walkthrough
Nor Intan Shafini Nasaruddin, Khairul Nurmazianna Ismail, and Aleena Puspita A.Halim
CHAPTER 31 329
Predicting Currency Crisis: An Analysis on Early Warning System from Different Perspective
Nor Azuana Ramli
CHAPTER 32 341
Using Analytic Hierarchy Process to Rank Takaful Companies based on Health Takaful Product
Noor Hafizah Zainal Aznam, Shahida Farhan Zakaria, and Wan Asma 'a Wan Abu Bakar
CHAPTER 33 349
Service Discovery Mechanism for Service Continuity in Heterogeneous Network
Shaifizat Mansor, Nor Shahniza Kamal Basha, Siti Rafidah Muhamat Dawam, Noor Rasidah Ali, and Shamsul Jamel Elias
CHAPTER 34 361
Ranking Islamic Corporate Social Responsibility Activities under Product Development Theme using Analytic Hierarchy Process
Shahida Farhan Zakaria, Wan-Asma ' Wan-Abu-Bakar, Roshima Said, Sharifah Nazura Syed-Noh, and Abd-Razak Ahmad
CHAPTER 35 369
A Fuzzy Rule Base System For Mango Ripeness Classification
Ab Razak Mansor, Mahmod Othman, Noor Rasidah Ali , Khairul Adilah Ahmad, and Samsul Jamel Elias
CHAPTER 36 381
Technology Assistance for Kids with Learning Disabilities:
Challenges and OpportunitiesSuhailah Mohd Yusof, Noor Hasnita Abdul Talib, and Jasmin IlyaniAhmad

CHAPTER 18
 Absolute Translativity of Generalized Nörlund Mean

Amjed Zraiqat

Abstract

In this paper, two results involving left and right translativity for absolute generalized Nörlund mean $|(\mathrm{N}, \mathrm{p}, \mathrm{q})|$ are established. Two interesting non-trivial examples to show that $|(\mathrm{N}, \mathrm{p}, \mathrm{q})|$ may have only one-side translative being constructed, one non-trivial example to show that $|(\mathrm{N}, \mathrm{p}, \mathrm{q})|$ may be translative is given, and one non-trivial example to show that $|(N, p, q)|$ is non-translative from the left nor do from the right is constructed.

Keywords: Nörlund mean; translativity, one-side translative; and sequence-to-sequence transformation.

[^0]
1 Introduction

Let $A=\left(a_{n, k}\right)$ be a sequence-to-sequence transformation, then A is said to be regular, if whenever $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ has a bounded variation, it follows that $\left\{\mathrm{t}_{\mathrm{n}}\right\}$ has a bounded variation and does not alter the sum.
Let $p=\left\{p_{n}\right\}, q=\left\{q_{n}\right\}$ be two given sequences of real numbers. Let $q_{n} \neq 0($ all $n \geq 0)$. The generalized Nörlund method (N, p, q) which was first considered by D. Borwin [5] is defined as the sequence-tosequence transformation

$$
\begin{equation*}
t_{n}=\sum_{k=0}^{n} a_{n, k} S_{k} \tag{1}
\end{equation*}
$$

where

$$
\begin{gathered}
a_{n, k}=\frac{1}{R_{n}} p_{n-k} q_{k} \\
R_{n}=p_{n} q_{0}+p_{n-1} q_{1}+\ldots+p_{0} q_{n} \neq 0 ; \quad(\text { all } \mathrm{n} \geq 0)
\end{gathered}
$$

It follows from Toeplitz's Theorem (Hardy 1949; Theorem (2)) that (N, p, q) is regular if, and only if

$$
\begin{equation*}
\sum_{k=0}^{n}\left|a_{n, k}\right|=\mathrm{O}(1) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n, k} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \text { for each fixed } \mathrm{k} \tag{3}
\end{equation*}
$$

The following important result due to Mears [10] is required for our purposes:

Theorem (1.1) (Mears [10])
$A_{\text {is absolutely regular if, and only if }}$

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{n, k} \text { converges for every } \mathrm{n} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& a_{n, k} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \text { for each fixed } \mathrm{k}, \tag{5}\\
& \sum_{k=0}^{\infty} a_{n, k} \rightarrow 1 \text { as } \mathrm{n} \rightarrow \infty \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|\sum_{\mu=K}^{\infty} a_{n, \mu}-\sum_{\mu=k}^{\infty} a_{n+1, \mu}\right|=O(1) . \tag{7}
\end{equation*}
$$

We define the sequence of constants $\left\{\mathrm{c}_{\mathrm{n}}\right\}$ formally by means of the identity

$$
\begin{equation*}
\left(\sum_{\mathrm{n}=0}^{\infty} r_{n} z^{n}\right)^{-1}=\sum_{n-0}^{\infty} c_{n} z^{n} ; \mathrm{c}_{-\mathrm{n}}=0 \tag{8}
\end{equation*}
$$

A is called Translative to the left (written) $A \in T_{L}$ if the limitability of $\left\{S_{j}\right\}_{j=0}^{\infty}$ implies the limitability of $\left\{S_{j-1}\right\}_{j=0}^{\infty}$ with $S_{-1}=0$.
$A \in T_{R}$ if the converse holds. $A \in T$ if, and only if $A \in T_{L}$ and $A \in T_{R}$.
On translativity of summability methods much work has been done already see [1]-[4], [6], [8] and [9].

2 Object of The Paper

The object of this paper is to obtain results for translativity of $|(N, p, q)|$ and to give two interesting examples to show that $|(N, p, q)|$ may belong to T_{L} or T_{R} without the other, and to give a non-trivial example to show that $|(N, p, q)|$ may be translative. Finally, an example to show that $|(N, p, q)| \notin T_{L} \cup T_{R}$ is given. These results will be included in sections (4) and (5).

3 Results

In this section we state and prove our two main results:

Theorem (3.1) Let $q_{n} \neq 0$; all $\mathrm{n} \geq 0$, and let ($\mathrm{N}, \mathrm{p}, \mathrm{q}$) be regular, then $|(N, p, q)| \in T_{L}$ if, and only if

$$
\begin{equation*}
M_{n, v} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty, \text { for each fixed } \mathrm{v} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=\mu-1}^{\infty}\left|\Delta \frac{p_{n+1}}{R_{n+1}} \cdot \sum_{v=0}^{\mu-1} R_{v} \sum_{k=v}^{n+1} \frac{q_{k+1}}{q_{k}} c_{k-v} \Delta \frac{p_{n-k}}{R_{n+1}}\right|=O(1), \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
M_{n, v}= & \frac{R_{v}}{R_{n+1}} \sum_{k=v}^{n} \frac{q_{k+1}}{q_{k}} p_{n-k} c_{k-v}, \quad 0 \leq v \leq n \tag{11}\\
& =0 \quad \text { otherwise. } \tag{12}
\end{align*}
$$

Further, if $\left\{c_{n}\right\}$ is bounded and $\left\{q_{n}\right\}$ is strictly increasing, then condition (10) alone is necessary and sufficient.

Theorem (3.2) Let $\mathrm{q}_{\mathrm{n}} \neq 0$; all $\mathrm{n} \geq 0$, and let ($\mathrm{N}, \mathrm{p}, \mathrm{q}$) be regular, then $|(N, p, q)| \in T_{R}$ if, and only if

$$
\begin{equation*}
H_{n, v} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty, \text { for each fixed } \mathrm{v} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=\mu-1}^{\infty}\left|\sum_{v=0}^{\mu-1} R_{v+1} \sum_{k=v}^{n+1} \frac{q_{k}}{q_{k+1}} c_{k-v} \Delta \frac{p_{n-k}}{R_{n+1}}\right|=O(1) \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
H_{n, v}= & \frac{R_{v+1}}{R_{n}} \sum_{k=v}^{n} \frac{q_{k}}{q_{k+1}} p_{n-k} c_{k-v}, \quad 0 \leq \mathrm{v} \leq \mathrm{n} \tag{15}\\
& =0 \quad \text { otherwise } \tag{16}
\end{align*}
$$

Further, if $\left\{c_{n}\right\}$ is bounded and $\left\{q_{n}\right\}$ is strictly increasing, then (14) alone is necessary and sufficient.

Proof of Theorem (3.1)

Let $\left\{\mathrm{t}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{t}_{n}\right\}$ be respectively the (N, p, q) transform of $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{S}_{\mathrm{n}-1}\right\}$, then

$$
\begin{equation*}
\mathrm{t}_{\mathrm{n}}=\frac{1}{\mathrm{R}_{\mathrm{n}}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{p}_{\mathrm{n}-\mathrm{k}} \mathrm{q}_{\mathrm{k}} \mathrm{~S}_{\mathrm{k}} \tag{17}
\end{equation*}
$$

so

$$
\begin{equation*}
\overline{\mathrm{t}}_{\mathrm{n}+1}=\frac{1}{\mathrm{R}_{\mathrm{n}+1}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{p}_{\mathrm{n}-\mathrm{k}} \mathrm{q}_{\mathrm{k}+1} \mathrm{~S}_{\mathrm{k}} \tag{18}
\end{equation*}
$$

Using the inversion formula in (17), we have

$$
\begin{equation*}
\mathrm{S}_{\mathrm{n}}=\frac{1}{q_{n}} \sum_{k=0}^{n} c_{n-k} R_{k} t_{k} \tag{19}
\end{equation*}
$$

where C_{n} is given as in (8).
Using (19), it follows from (18) that

$$
\begin{equation*}
\bar{t}_{n+1}=\sum_{v=0}^{\infty} M_{n, v} t_{v}, \tag{20}
\end{equation*}
$$

where $M_{n, v}$ is given by (11) and (12).
Hence $|(N, p, q)| \in T_{L}$ if, and only if the transformation given by (20) is absolutely regular. Observe that when $S_{n}=1($ all $\mathrm{n} \geq 0)$, (17) and (19) imply that

$$
\begin{equation*}
q_{n}=\sum_{k=0}^{n} c_{n-k} R_{k} \tag{21}
\end{equation*}
$$

Using (11), (12) and (21), one can easily seen that

$$
\begin{equation*}
\sum_{v=0}^{\infty} M_{n, v}=1-\frac{p_{n+1}}{R_{n+1}} \tag{22}
\end{equation*}
$$

Therefore, (4) and (6) follow from the regularity of (N, p, q) together with (22). Using (22) and (12), we see that (7) will be satisfied if, and only if (10) is satisfied. Hence, it follows from Mear's Theorem that $|(N, p, q)| \in T_{L}$ if, and only if (9) and (10) are satisfied. Next, if $\left\{c_{n}\right\}$ is bounded and $\left\{q_{n}\right\}$ is strictly increasing then

$$
\begin{equation*}
\frac{\mathrm{c}_{\mathrm{n}}}{\mathrm{q}_{\mathrm{n}}} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty . \tag{23}
\end{equation*}
$$

Using (11), we have

$$
\begin{equation*}
\left|M_{n, v}\right| \leq\left|\frac{R_{v}}{R_{n+1}}\right|\left(\left.\sum_{k=0}^{N}\left|p_{n-k} q_{k+1}\right| \frac{c_{k-v}}{q_{k}}\left|+\sum_{k=N+1}^{n}\right| p_{n-k} q_{k+1}| | \frac{c_{k-v}}{q_{k}} \right\rvert\,\right) \tag{24}
\end{equation*}
$$

Using (23) and the regularity of (N, p, q), (9) follows from (24). This completes the proof.

Proof of Theorem (3.2)

Using (18) to obtain S_{n} in terms of t_{n}, and then substitute this in (17), we have

$$
\begin{equation*}
\mathrm{t}_{\mathrm{n}}=\sum_{v=0}^{\infty} H_{n, v} \bar{t}_{v+1} \tag{25}
\end{equation*}
$$

where $\mathrm{H}_{\mathrm{n}, \mathrm{v}}$ is given by (15) and (16).
Now, $|(N, p, q)| \in T_{R}$ if, and only if the transformation given by (25) is absolutely regular. For this, we use (15) to get

$$
\begin{align*}
\sum_{\mathrm{v}=0}^{\mathrm{n}} \mathrm{H}_{\mathrm{n}, \mathrm{v}} & =\sum_{\mathrm{v}=0}^{\mathrm{n}} \frac{\mathrm{R}_{\mathrm{v}+1}}{R_{\mathrm{n}}} \sum_{\mathrm{k}=\mathrm{v}}^{\mathrm{n}} \frac{\mathrm{q}_{\mathrm{k}}}{\mathrm{q}_{\mathrm{k}+1}} p_{\mathrm{n}-\mathrm{k}} \mathrm{c}_{\mathrm{k}-\mathrm{v}} \\
& =\frac{1}{R_{\mathrm{n}}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{q}_{\mathrm{k}} p_{\mathrm{n}-\mathrm{k}} \frac{1}{\mathrm{q}_{\mathrm{k}+1}} \sum_{\mathrm{v}=0}^{\mathrm{k}} \mathrm{R}_{\mathrm{v}+1} c_{\mathrm{k}-\mathrm{v}} \tag{26}
\end{align*}
$$

which by (24) reduces to

$$
\begin{align*}
\sum_{\mathrm{v}=0}^{\mathrm{n}} \mathrm{H}_{\mathrm{n}, \mathrm{v}} & =\frac{1}{\mathrm{R}_{\mathrm{n}}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{q}_{\mathrm{k}} p_{\mathrm{n}-\mathrm{k}} \frac{1}{\mathrm{q}_{\mathrm{k}+1}}\left(\mathrm{q}_{\mathrm{k}+1}-\mathrm{c}_{\mathrm{k}+1}\right) \tag{27}\\
& =1-\frac{1}{R_{\mathrm{n}}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{\mathrm{q}_{\mathrm{k}}}{q_{\mathrm{k}+1}} p_{\mathrm{n}-\mathrm{k}} \mathrm{c}_{\mathrm{k}+1} \tag{28}\\
& =1-\left(\mathrm{H}_{\mathrm{n},-1}-\frac{\mathrm{q}_{-1} p_{\mathrm{n}+1}}{\mathrm{q}_{0} R_{\mathrm{n}}}\right) \tag{29}\\
& =\mathbf{1} \tag{30}
\end{align*}
$$

So that (4) and (6) are satisfied. Hence it follows from Mear's Theorem that $|(N, p, q)| \in T_{R}$ if, and only if (13) and

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|\sum_{v=\mu}^{\infty} H_{n, v}-\sum_{v=\mu}^{\infty} H_{n+1}\right|=O(1) \tag{31}
\end{equation*}
$$

are satisfied. Using (30), it can be easily shown that (31) reduces to (14). This completes the proof of the first part. Next, using the same technique used in the proof of the second part of Theorem(3.1) , the second part follows at once.

4 Examples

In this section, we will give three examples to show in each of the first two examples that $\mid(N, p, q)$ can be only one-side translative. In the third example we will give a non-trivial case to show that $|(N, p, q)|$ may be translative.

EXAMPLE (4.1)

Let

$$
\begin{align*}
& p_{n}=1 ; \quad(\mathrm{n} \geq 0) \tag{32}\\
& q_{0}=1 \tag{33}
\end{align*}
$$

and

$$
\begin{equation*}
q_{n}=w!, \quad(\mathrm{w}-1)!\leq \mathrm{n}<\mathrm{w}!; \mathrm{w}=2,3, \ldots, \tag{34}
\end{equation*}
$$

then $|(N, p, q)| \in T_{R}$, but $|(N, p, q)| \notin T_{L}$.

Proof Using(32), we have

$$
\begin{equation*}
c_{0}=1, c_{1}=-1 \text { and } \mathrm{c}_{\mathrm{n}}=0 ; \mathrm{n} \geq 2 \tag{35}
\end{equation*}
$$

Using (32) and (35), it follows from (15) that

$$
\begin{equation*}
H_{n, v}=\frac{R_{v+1}}{R_{n}}\left(\frac{q_{v}}{q_{v+1}}-\frac{q_{v+1}}{q_{v+2}}\right), 0 \leq \mathrm{v} \leq \mathrm{n} . \tag{36}
\end{equation*}
$$

observe that

$$
R_{w!}=1+q_{1}+q_{2}+\ldots+q_{(w-1)!}+\ldots+q_{w!-1}+q_{w!}
$$

$$
\begin{align*}
& =1+\sum_{k=2}^{w}(k!-(k-1)!) k!+(w+1)! \\
& \sim(w!)^{2} \tag{37}
\end{align*}
$$

and using (36), (13) follows immediately.
Next, observe that $\mathrm{q}>0$; (all $\mathrm{n} \geq 0)$ and using (32)-(35), the left hand side of (14) will be reduces to

$$
\begin{align*}
& \sum_{n=\mu-1}^{\infty}\left|\left(\frac{1}{R_{n-1}}-\frac{1}{R_{n-2}}\right)_{v=0}^{\mu-1} R_{v+1}\left(\frac{q_{v}}{q_{v+1}}-\frac{q_{v+1}}{q_{v+2}}\right)\right| \\
& =\sum_{n=\mu-1}^{\infty}\left|\left(\frac{1}{q_{1}}+R_{\mu}-R_{\mu} \frac{q_{\mu}}{q_{\mu+1}}-q_{\mu}\right)\left(\frac{1}{R_{n+1}}-\frac{1}{R_{n+2}}\right)\right| \\
& \left.=\left|\frac{1}{q_{1} R_{\mu}}+1-\frac{q_{\mu}}{q_{\mu+1}}-\frac{q_{\mu}}{R_{\mu}} R_{\mu}\right| \sum_{n=\mu-1}^{\infty}\left(\frac{1}{R_{n+1}}-\frac{1}{R_{n+2}}\right) \right\rvert\, \\
& =O(1) . \tag{38}
\end{align*}
$$

Hence, (14) is satisfied and theorem (3.2) implies that $|(N, p, q)| \in T_{R}$. Next, to show that $|(N, p, q)| \notin T_{L}$, it is enough to show that (10) is not satisfied. Using (32)-(35), we have that the left hand side of (10) is equivalent to:

$$
\begin{align*}
& \sum_{n=\mu-1}^{\infty}\left|\left(\frac{1}{R_{n+1}}-\frac{1}{R_{n+2}}\right)\left(1+\sum_{v=0}^{\mu-1} R_{v} \Delta \frac{q_{v+1}}{q_{v}}\right)\right| \\
& =\left(1+R_{\mu}-R_{\mu-1} \frac{q_{\mu+1}}{q_{\mu}}\right) \sum_{n=\mu-1}^{\infty} \Delta \frac{1}{R_{n+1}} \tag{39}\\
& \sim \frac{R_{\mu-1} q_{\mu+1}}{R_{\mu} q_{\mu}} . \tag{40}
\end{align*}
$$

Taking $\mu=w!-1$, and using (34), it follows from (40) that
$\frac{R_{\mu-1} q_{\mu+1}}{R_{\mu} q_{\mu}}=\frac{q_{w!} R_{w!-2}}{q_{w!-1} R_{w!-1 ?}} \sim \frac{(w+1)!}{w!} \cdot \frac{(w!-2)^{2}}{(w!-1)^{2}} \sim w+1 \neq O(1)$,
so that (10) is not satisfied and consequently $|(N, p, q)| \notin T_{L}$. This completes the proof.

EXAMPLE (4.2)

Write $E_{w}=2^{w-1} \mathrm{w}$!, and let

$$
\begin{align*}
& p_{n}=1 \quad(\text { all } \mathrm{n} \geq 0), \tag{42}\\
& q_{0}=1
\end{align*}
$$

and

$$
\begin{equation*}
q_{n}=\frac{1}{w!} ; \quad \mathrm{W}_{\mathrm{w}-1} \leq \mathrm{n}<E_{w} ; \mathrm{w}=2,3, \ldots \tag{44}
\end{equation*}
$$

then $|(N, p, q)| \in T_{L}$, but $|(N, p, q)| \notin T_{R}$.
and

$$
\begin{equation*}
\sum_{\mathrm{n}=\mathrm{E}_{w-1}}^{\mathrm{E}_{\mathrm{w}}} \mathrm{q}_{\mathrm{n}}=\frac{\mathrm{E}_{\mathrm{w}}-E_{w-1}}{w!} \sim 2^{w-1}, \tag{45}
\end{equation*}
$$

we have

$$
\begin{equation*}
R_{E_{w}} \sim 2^{w} . \tag{47}
\end{equation*}
$$

Using (39), (42)-(47), we see that the quantity on the right hand side of (40) is bounded, so that (10) is satisfied. Also (9) is clearly satisfied. Hence, by Theorem (3.1), $|(N, p, q)| \in T_{L}$. Next, using (44), we have

$$
\begin{equation*}
\frac{q_{\mu}}{q_{\mu+1}} \sim \mu+1 \neq O(1) \tag{48}
\end{equation*}
$$

Using (48), it follows from (38) that the left hand side of (14) is unbounded.
Hence by Theorem (3.2), $|(N, p, q)| \notin T_{R}$.

EXAMPLE (4.3)

Let

$$
\begin{equation*}
p_{0}=1, p_{1}=-1 \text { and } \mathrm{p}_{\mathrm{n}}=0 ;(\mathrm{n} \geq 2) \tag{49}
\end{equation*}
$$

and let

$$
\begin{equation*}
q_{n}=(n+1)!;(\mathrm{n} \geq 0) \tag{50}
\end{equation*}
$$

then $|(N, p, q)| \in T$.

Proof

Using (49) and (50), we have

$$
\begin{equation*}
\mathrm{c}_{\mathrm{n}}=1 ;(\mathrm{n} \geq 0) \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{R}_{0}=1, \mathrm{R}_{\mathrm{n}}=\mathrm{q}_{\mathrm{n}}-\mathrm{q}_{\mathrm{n}-1} \mathrm{n}!\mathrm{n} ;(\mathrm{n} \geq 1) \tag{52}
\end{equation*}
$$

Using (50) and (51), it follows from Theorems (3.1) and (4.2) that $|(N, p, q)| \in T$ if, and only if, (10) and (14) are satisfied. Using (49)-(52), the left hand side of (10) will reduces to:

$$
\begin{gather*}
\sum_{n=\mu-1}^{\infty} \sum_{v=0}^{\mu-1}\left(q_{v}-q_{v-1}\left(-\frac{q_{n+2}}{q_{n+1} R_{n+2}}+\frac{q_{n+1}}{q_{n}}\left(\frac{1}{R_{n+1}}+\frac{1}{R_{n+2}}\right)-\frac{q_{n}}{q_{n-1} R_{n+1}}\right)\right. \tag{53}\\
=q_{\mu-1} \sum_{n=\mu-1}^{\infty}\left(\frac{1}{R_{n+1}}-\frac{1}{R_{n+2}}\right)=O(1) . \tag{54}
\end{gather*}
$$

So that (10) is satisfied and $|(N, p, q)| \in T_{L}$. Next, using (51) and (52), the left hand side of (14) will be reduces to:

$$
\begin{align*}
& \sum_{n=\mu-1}^{\infty} \sum_{v=0}^{\mu-1}\left(q_{v+1}-q_{v}\right)\left(-\frac{q_{n+1}}{q_{n+2} R_{n+2}}+\frac{q_{n} q_{n-1}}{q_{n+1} R_{n+1}}+\frac{1}{R_{n+2}}-\frac{q_{n-1}}{q_{n} R_{n+1}}\right) \tag{55}\\
& =\left(q_{\mu}-1\right) \sum_{n=\mu-1}^{\infty}\left(\frac{1}{(n+1)(n+2) R_{n+1}}-\frac{1}{(n+2)(n+3) R_{n+2}}\right) \tag{56}\\
& =O(1), \tag{57}
\end{align*}
$$

so that (14) is satisfied and the proof is completed.

EXAMPLE (4.4)

Let

$$
\begin{equation*}
p_{0}=1, p_{1}=-1 \text { and } \mathrm{p}_{\mathrm{n}}=0 ;(\mathrm{n} \geq 2), \tag{58}
\end{equation*}
$$

and define $\left\{q_{n}\right\}$ by

$$
q_{n}=\left\{\begin{array}{ll}
n^{3} & \text { if } n \text { is odd } \tag{59}\\
1 & \text { if } n \text { is even }
\end{array}\right\},
$$

then $|(N, p, q)| \notin T_{L} \cup T_{R}$.

Proof

Using (58) and (59), and the fact that

$$
R_{n}=p_{n} q_{0}+p_{n-1} q_{1}+\ldots+p_{1} q_{n-1}+p_{0} q_{n}
$$

we have

$$
R_{0}=1,
$$

and

$$
R_{n}=q_{n}-q_{n-1}=\left\{\begin{array}{l}
n^{3}-1 \text { if } \mathrm{n} \text { is odd } \tag{61}\\
2-3 \mathrm{n}+3 \mathrm{n}^{2}-n^{3} \text { if } \mathrm{n} \text { is even }
\end{array}\right\}
$$

and these imply (2) and (3), so that ($\mathrm{N}, \mathrm{p}, \mathrm{q}$) is regular. Also using (58), we have

$$
\begin{equation*}
c_{n}=1 ;(\mathrm{n} \geq 0) . \tag{62}
\end{equation*}
$$

Using (58), and (59)-(62), and taking n to be given, we have from (11) that for every fixed v,

$$
\begin{align*}
& M_{n, v}=\frac{R_{v}}{R_{n+1}}\left[\frac{q_{n+1}}{q_{n}}-\frac{q_{n}}{q_{n-1}}\right] \tag{63}\\
& =\frac{R_{v}}{2-3(n+1)+3(n+1)^{2}-(n+1)^{3}}\left[\frac{1}{n^{3}}-\frac{n^{3}}{1}\right] \text { if } \mathrm{n} \text { is odd } \tag{64}\\
& \rightarrow R_{v} \neq 0 \tag{65}
\end{align*}
$$

$$
\begin{align*}
& =\frac{R_{v}}{(n+1)^{3}-1}\left[\frac{(n+1)^{3}-1}{1}-\frac{1}{(n+1)^{3}-1}\right] \text { if } \mathrm{n} \text { is even } \tag{66}\\
& \rightarrow R_{v} \neq 0 \tag{67}
\end{align*}
$$

Hence (9) does not satisfied, and Theorem (3.1) implies that $\mid(N, p, q) \notin T_{L}$. Finally,using (58) and (59)-(62), and let n be odd, we have from (15) that for ever fixed v,

$$
\begin{align*}
& \mathrm{H}_{\mathrm{n}, \mathrm{v}}=\frac{\mathrm{R}_{\mathrm{v}+1}}{\mathrm{n}^{3}-1}\left[\frac{\mathrm{n}^{3}}{1}-\frac{1}{\mathrm{n}^{3}}\right], \tag{68}\\
& \rightarrow \mathrm{R}_{\mathrm{v}+1} \neq 0 \tag{69}
\end{align*}
$$

So that (13) is not satisfied, and Theorem (3.2) implies that $|(N, p, q)| \notin T_{R}$. This completes the proof.

References

1. AL-Madi, A.K. "On Translativity of the product of Riesz summability Methods" Indian Jour. Pure Appl. Maths. 11(11) (1980) pp. 1444-1457.
2. AL-Madi, A.K. "On Translativity of the product of Nörlund summability Methods" Indian Maths. Soc. 44(1980) pp. 83-90.
3. AL-Madi, A.K. "On Translativity of Absolute Rogosinski - Bernstein summability methods" Internet J. Math \& Math. Soc v11 No. 3(1988) 517-522.
4. Amjed Abo-Izreik and Azmi k. almadi "On Translativity of Absolute Rogosinski - Bernstein summability methods of Different Order" Vesti BSV (Republic of Belarus) Beernus 6 ty.cep.1.2006 No1.

chus

[^0]: Amjed Zraiqat (\triangle)
 Al-Zaytoonah University Of Jordan
 Amman-Jordan
 E-Mail: Amjad@Zuj.Edu.Jo

