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CHAPTER 18 

Absolute Translativity of Generalized Nörlund 

Mean  

 

Amjed Zraiqat 

 

 
Abstract. In this paper, two results involving left and right 

translativity for absolute generalized Nörlund mean  qp,N,  are 

established. Two interesting non-trivial examples to show that 

 qp,N,  may have only one-side translative being constructed, one 

non-trivial example to show that  qp,N,  may be translative is given, 

and one non-trivial example to show that  qp,N,  is non-translative 

from the left nor do from the right is constructed.  
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1 Introduction 
 

Let  knaA ,  be a sequence-to-sequence transformation, then A is said to 

be regular, if whenever  nS  has a bounded variation, it follows that  nt  

has a bounded variation and does not alter the sum. 

Let    nn qq ,pp   be two given sequences of real numbers. Let

 0n all  0qn  . The generalized Nörlund method (N,p,q) which 

was first considered by D. Borwin [5] is defined as the sequence-to-

sequence transformation 

 

                                      



n

k

kknn Sat
0

, ,         (1)                                     

where  

,  
1

, kkn

n

kn qp
R

a   

0)n (all   ;  0... 0110   nnnn qpqpqpR . 

 

It follows from Toeplitz’s Theorem (Hardy 1949; Theorem (2)) that (N, p, q) 

is regular if, and only if 

       



n

k

kna
0

, ,  O(1)                                (2) 

and  

 n as  0, kna for each fixed k.                         (3) 

 
The following important result due to Mears [10] is required for our purposes:  

 

Theorem (1.1) (Mears [10]) 

A is absolutely regular if, and only if  




0

,

k

kna  converges for every n,                       (4) 
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 n as  0,kna  for each fixed k,          (5) 






n as  1
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We define the sequence of constants  nc  formally by means of the identity 

0c  ;  n-

0

1

0n

















 n

n

n

n

n zczr .                  (8) 

A is called Translative to the left (written) LTA  if the limitability of 

 
0jjS  implies the limitability of  

 01 jjS  with 01 S . 

RTA  if the converse holds. TA  if, and only if LTA  and RTA . 

On translativity of summability methods much work has been done already 

see [1]-[4], [6], [8] and [9]. 

 

2 Object of The Paper 
 

The object of this paper is to obtain results for translativity of  qpN ,,  and 

to give two interesting examples to show that  qpN ,,  may belong to LT

or RT  without the other, and to give a non-trivial example to show that 

 qpN ,,  may be translative. Finally, an example to show that 

  RL TTqpN ,,  is given. These results will be included in sections (4) 

and (5). 

 

3 Results 
 

In this section we state and prove our two main results: 

 

Theorem (3.1) Let 0n all  ;  0 nq , and let (N,p,q) be regular, then 

  LTqpN ,,  if, and only if 
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 n  as  0,vnM  , for each fixed v,          (9) 

and 
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=0     otherwise.                                      (12) 

 

Further, if  nc is bounded and  nq is strictly increasing, then condition 

(10) alone is necessary and sufficient. 

 

Theorem (3.2) Let 0n  all  ;0qn  , and let (N,p,q) be regular, then 

  RTqpN ,,  if, and only if 

 n  as  0,vnH  , for each fixed v,                  (13) 

and 
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=0    otherwise.                                                    (16) 

 

Further, if  nc is bounded and  nq is strictly increasing, then (14) alone is 

necessary and sufficient. 
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Proof of Theorem (3.1)  

Let  nt  and  
n

t  be respectively the  qpN ,,  transform of  nS  and 

 1-nS , then  

kk

n

0k

kn

n

n Sqp
R

1
t 



 ,                                            (17) 

so 

k1k

n

0k

kn

1n

1n Sqp
R

1
t 







  .                                     (18) 

Using the inversion formula in (17), we have 

kk

n

k

kn

n

tRc
q




0

n

1
S ,                                               (19) 

where nc is given as in (8). 

Using (19), it follows from (18) that 

v

v

vnn tMt 




 
0

,1 ,                                                       (20) 

where 
vnM ,

 is given by (11) and (12).  

Hence   LTqpN ,,  if, and only if the transformation given by (20) is 

absolutely regular. Observe that when  0n all  1 nS , (17) and (19) 

imply that 





n

k

kknn Rcq
0

.                                                          (21) 

Using (11), (12) and (21), one can easily seen that 

1

1

0

, 1








n

n

v

vn
R

p
M .                                                     (22) 

Therefore, (4) and (6) follow from the regularity of  qpN ,, together with 

(22). Using (22) and (12), we see that (7) will be satisfied if, and only if (10) 

is satisfied. Hence, it follows from Mear’s Theorem that   LTqpN ,,  if, 

and only if (9) and (10) are satisfied. Next, if  nc  is bounded and  nq is 

strictly increasing then 

 n  as  0
q

c

n

n
.                                                  (23) 
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Using (11), we have 
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Using (23) and the regularity of  qpN ,, , (9) follows from (24). This 

completes the proof. 

 
Proof of Theorem (3.2)  

Using (18) to obtain nS  in terms of nt , and then substitute this in (17), we 

have 







0

1,nt
v

vvn tH ,                                                           (25) 

where 
vn,H  is given by (15) and (16). 

Now,   RTqpN ,,  if, and only if the transformation given by (25) is 

absolutely regular. For this, we use (15) to get 
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which by (24) reduces to 
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1 .                                                                            (30) 

 

So that (4) and (6) are satisfied. Hence it follows from Mear’s Theorem that 

  RTqpN ,,  if, and only if (13) and 
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,                                     (31) 

 

are satisfied. Using (30), it can be easily shown that (31) reduces to (14). This 

completes the proof of the first part. Next, using the same technique used in 

the proof of the second part of Theorem(3.1) , the second part follows at once. 

 

4 Examples 
 

In this section, we will give three examples to show in each of the first two 

examples that  qpN ,,  can be only one-side translative. In the third 

example we will give a non-trivial case to show that  qpN ,,  may be 

translative. 

EXAMPLE (4.1) 

Let  

0)(n   ;  1 np ,                                                            (32) 

,  10 q                                                                               (33) 

and  

2,3,...,  w;  w!n1)!-(w   ,  !  wqn                 (34) 

then   RTqpN ,, , but   LTqpN ,,  . 

 

Proof Using(32), we have 

2n  ;  0c  and  1,  1 n10  cc .                         (35) 

 

Using (32) and (35), it follows from (15) that 
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1

1
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observe that 

  !1!!121! ......1 wwww qqqqqR    
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w

k

wkkk
2

!1!!1!1

 

˜  2!w ,                                                                                (37) 

 

and using (36), (13) follows immediately. 

 

Next, observe that q>0 ;  0n all  and using (32)-(35), the left hand side of 

(14) will be reduces to 
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)1(O .                                                                           (38) 

 

Hence, (14) is satisfied and theorem (3.2) implies that   RTqpN ,, . Next, 

to show that   LTqpN ,, , it is enough to show that (10) is not satisfied. 

Using (32)-(35), we have that the left hand side of (10) is equivalent to: 
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qR 11 
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Taking 1! w , and using (34), it follows from (40) that 
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so that (10) is not satisfied and consequently   LTqpN ,, . This completes 

the proof. 

EXAMPLE (4.2) 

Write   w!2 1 w

wE , and let 

0)n (all     1 np ,                                                         (42) 

,  10 q                                                                                 (43) 

and  

2,3,...,  w;  n   W;  
!

1
1-w  wn E

w
q                    (44) 

then   LTqpN ,, , but   RTqpN ,,  . 

 

Proof  

Observe that 

0)n (all  ;0 nq                                                             (45) 

and  

!

E
q 1w

E

En

n

w

1-w
w

Ew




 ˜

12 w
,                                             (46) 

we have 

wER ˜ 
w2  .                                                                          (47) 

Using (39), (42)-(47), we see that the quantity on the right hand side of (40) is 

bounded, so that (10) is satisfied. Also (9) is clearly satisfied. Hence, by 

Theorem (3.1),   LTqpN ,, . Next, using (44), we have 

1



q

q
˜ )1(1 O .                                                          (48) 

Using (48), it follows from (38) that the left hand side of (14) is unbounded. 

Hence by Theorem (3.2),   RTqpN ,, . 
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EXAMPLE (4.3) 

Let  

2)(n  ; 0p  and  1  ,1 n10  pp ,                      (49) 

 and let 

   0n  ;  !1  nqn ,                                                    (50) 

then   TqpN ,,  . 

 

Proof  
Using (49) and (50), we have 

0)(n  ;  1cn                                                                 (51) 

and  

1)(n  ; n!n q-qR  ,1R 1-nnn0  .                          (52) 

 

Using (50) and (51), it follows from Theorems (3.1) and (4.2) that 

  TqpN ,,  if, and only if, (10) and (14) are satisfied. Using (49)-(52), 

the left hand side of (10) will reduces to: 
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So that (10) is satisfied and   LTqpN ,, . Next, using (51) and (52), the 

left hand side of (14) will be reduces to: 
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so that (14) is satisfied and the proof is completed. 
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EXAMPLE (4.4) 

Let  

2)(n  ; 0p  and  1  ,1 n10  pp ,                     (58) 

 and define  nq  by 










even isn  if    1

odd isn  if  3n
qn ,                                                  (59) 

then   RL TTqpN ,,  . 

 

Proof  

 

Using (58) and (59), and the fact that 

                                       nnnnn qpqpqpqpR 011110 ...    , 

we have 

                                       10 R  , 

and  
















 

even isn  if  3n3n-2

odd isn  if  1

32

3

1
n

n
qqR nnn

,   (61) 

 

and these imply (2) and (3), so that (N,p,q) is regular. Also using (58), we 

have  

0)(n  ;  1 nc .                                                    (62) 

 

Using (58), and (59)-(62), and taking n to be given, we have from (11) that for 

every fixed v , 
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Rv
   if n is even      (66)                        

 

0 vR .             (67) 

                                                                                                   

Hence (9) does not satisfied, and Theorem (3.1) implies that   LTq,p,N  . 

Finally,using (58) and (59)-(62), and let n be odd, we have from (15) that for 

ever fixed v , 












 

3

3

3

1v
v,n

n

1

1

n

1n

R
H ,                                                    (68) 

 

0R 1v   ,                                                                 (69) 

So that (13) is not satisfied, and Theorem (3.2) implies that   RTqpN ,, . 

This completes the proof. 
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