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CHAPTER 8 

A Description of Projective Contractions in the 

Orlicz-Kantorovich Lattice 

Inomjon Ganiev and M. Azram 
 

Abstract. In the present paper we  show that any positive projective 

contractions 𝑸 with 𝑸𝟏 = 𝟏 in the Orlicz —Kantorovich lattices 

𝑳𝑴(𝜵̂, 𝝁̂) can be represented in the form   𝑸(𝒇̂)(𝝎) = 𝑬𝝎(𝒇(𝝎)|𝜵𝝎
𝟏 ) 

for any 𝒇̂ ∈ 𝑳𝑴(𝜵̂, 𝝁̂) and for almost all 𝝎 ∈ 𝜴, where 𝑬𝝎(⋅ |𝜵𝝎
𝟏 ) is 

conditional expectation operator.  Using this result we  get abstract 

characterization conditional expectation operators in the Orlicz-

Kantorovich 𝑳𝑴(𝜵̂, 𝝁̂) –lattice. 

_______________________________________________________________ 

Keywords: Orlicz-Kantorovich lattice; positive projective 

contraction; conditionally expectation operator. 
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1 Introduction 
 

One of the important problems of positive operator’s theory is an abstract 

characterization of the conditional expectation operators in function spaces. In 

(Rao, 1976) a characterization of the conditional probability measures as 

subclasses of vector measures on general Banach function spaces is given. 

Moreover the following result is proven;  

 

Theorem 1.1. (Rao, 1976). Let (Ω, Σ, 𝜇)  be a measurable space with a finite 

measure 𝜇. If  𝑇: 𝐿𝑝(𝜇) → 𝐿𝑝(𝜇), (1 ≤ 𝑝 < ∞) is a positive projective 

contraction with 𝑇1 = 1, then 𝑇𝑓 = 𝐸(𝑓|𝐹), 𝑓 ∈ 𝐿𝑝(𝜇), for a unique 𝜎-

subalgebra 𝐹 ⊂ Σ. Where 𝐸(⋅ |𝐹) is conditional expectation operator relative 

to 𝐹.  

 

In (Rao, 1965) this theorem is proven for Orlicz spaces.  In (Rao, 1976), 

necessary and sufficient conditions for 𝑇: 𝐿1(𝜇) → 𝐿1(𝜇) to be conditional 

expectation operator relative to 𝐹 is obtained.  Dodds, Huijsmans and De 

Pagter in (Dodds et al., 1965) extended these result to the vector lattices.  We 

recall that in the theory of Banach bundles 𝐿0-valued Banach spaces are 

considered, and such spaces are called Banach–Kantorovich spaces.  In 

(Gutman, 1993), (Gutman, 1995) the theory of Banach–Kantorovich spaces is 

developed.  Analogues of many well-known functional spaces have been 

defined and studied. For example, in (Ganiev, 2006) Banach-Kantorovich 

lattice 𝐿𝑝(𝛻̂, 𝜇̂) is represented as a measurable bundle of classical 𝐿𝑝 –lattices. 

In (Zakirov & Chilin, 2009), (Zakirov, 2007) an analogue of the Orlicz spaces 

has been considered. Naturally, these functional Kantorovich spaces should 

have many properties similar to the classical ones constructed by the real 

valued measures.  

To investigate the properties of Banach–Kantorovich spaces it is natural 

to use measurable bundles of such spaces.  Since, one has a sufficiently well 

explored theory of measurable bundles of Banach lattices (Ganiev, 2006), it is 

an effective tool which gives well opportunity to obtain various properties of 

Banach–Kantorovich spaces. It is worthy to mention that using this way, 

weighted ergodic theorems for positive contractions of Banach-Kantorovich 

lattices 𝐿𝑝(𝛻̂, 𝜇̂), have been established (Chilin & Ganiev (2000))., ( Ganiev & 

Mukhamedov, 2013) .  

 

 Definition 1.2.  The 𝐿0–linear, 𝐿0–bounded positive operator 𝑇 from 𝐿𝑝(𝛻̂, 𝜇̂) 

onto (𝑏𝑜)–closet vector subspace 𝐿𝑝(𝛻̂
1, 𝜇̂1) of 𝐿𝑝(𝛻̂, 𝜇̂) is said to be 
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conditional expectation operator with respect to the regular Boolean sub-

algebra 𝛻̂1 if ∫𝑇 (𝑓)𝑑𝜇̂ = ∫ 𝑓 𝑑𝜇̂ and it is denoted by 𝑇 = 𝐸(⋅ |𝛻̂1).  
 

In (Kusraev, 1985), Theorem 4.2.9 it has been proven that there exists 

conditional expectation operator 𝐸(⋅ |𝛻̂1): 𝐿1(𝛻̂, 𝜇̂) → 𝐿1(𝛻̂
1, 𝜇̂1) satisfying 

the following conditions:  

 

1) 𝐸(⋅ |𝛻̂1) is linear, positive, idempotent operator;  

2) ∫𝐸 (𝑓|𝛻̂1)𝑑𝜇̂ = ∫ 𝑓 𝑑𝜇̂;  

3) 𝐸(𝑔̂𝑓|𝛻̂1) = 𝑔̂𝐸(𝑓|𝛻̂1) for any 𝑔̂ ∈ 𝐿∞(𝛻̂1, 𝜇̂1) è 𝑓 ∈ 𝐿1(𝛻̂, 𝜇̂). 

It means that 𝐸(⋅ |𝛻̂1) is projective contraction in the Banach —Kantorovich 

lattice 𝐿1(𝛻̂, 𝜇̂. In this case ∥ 𝐸(𝑓|𝛻̂1) ∥𝐿1(𝛻̂,𝜇̂)≤∥ 𝑓 ∥𝐿1(𝛻̂,𝜇̂) for any 𝑓 ∈

𝐿1(𝛻̂, 𝜇̂) and 𝐸(𝟏|𝛻̂1) = 𝟏.  

 

Let Banach-Kantorovich lattice 𝐿𝑝(𝛻̂, 𝜇̂) be represented as a measurable 

bundle of classical 𝐿𝑝(𝛻𝜔, 𝜇𝜔)–lattices. The description of conditional 

expectation operator 𝐸(⋅ |𝛻̂1): 𝐿1(𝛻̂, 𝜇̂) → 𝐿1(𝛻̂
1, 𝜇̂1) is obtained in (Ganiev, 

2006). 

 

Theorem 1.3.  Let 𝐸(⋅ |𝛻̂1): 𝐿1(𝛻̂, 𝜇̂) → 𝐿1(𝛻̂
1, 𝜇̂1) be conditional expectation 

operator. Then for any 𝜔 ∈ Ω there exists 𝐸𝜔(⋅ |𝛻𝜔
1): 𝐿1(𝛻𝜔, 𝜇𝜔) → 𝐿1(𝛻𝜔

1, 𝜇𝜔
1 ) 

conditionally expectation operator, such that 𝐸(𝑓|𝛻̂1)(𝜔) = 𝐸𝜔(𝑓(𝜔)|𝛻𝜔
1) for 

any 𝑓 ∈ 𝐿1(𝛻̂, 𝜇̂) and for almost all 𝜔 ∈ Ω, where 𝐸𝜔(⋅ |𝛻𝜔
1) is conditional 

expectation operator on 𝐿𝑝(𝛻𝜔 , 𝜇𝜔).  

 

Consequences of the development of the general theory, conditional 

expectation operators in Banach — Kantorovich lattices 𝐿𝑝(𝛻̂, 𝜇̂) over the ring 

of measurable functions  gives rise the problem of an abstract characterization 

conditional expectation operators in Banach — Kantorovich lattices 𝐿𝑝(𝛻̂, 𝜇̂), 

which are reasonably solved using the method of measurable bundles. In the 

present paper we will show that any positive projective contractions 𝑄 with 

𝑄𝟏 = 𝟏 in the Orlicz —Kantorovich lattices 𝐿𝑀(𝛻̂, 𝜇̂) can be represented in 

the form  𝑄(𝑓)(𝜔) = 𝐸𝜔(𝑓(𝜔)|𝛻𝜔
1) for any 𝑓 ∈ 𝐿𝑀(𝛻̂, 𝜇̂) and for almost all 

𝜔 ∈ Ω, where 𝐸𝜔(⋅ |𝛻𝜔
1) is conditional expectation operator. To prove the 

main result of this paper we are going to use measurable bundles of Banach —

Kantorovich lattices. We note that one of the effective methods to study of 

Banach —Kantorovich spaces is measurable bundles (Gutman, 1995).  
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In ( Ganiev & Mukhamedov, 2013)  prove weighted ergodic theorems and 

multiparameter weighted ergodic theorems for positive contractions acting on 

𝐿𝑝(𝛻̂, 𝜇̂). In (Ganiev & Mukhamedov, 2015) this results generalized for  

Orlicz-Kantorovich 𝐿𝑀(𝛻̂, 𝜇̂) –lattice. 

 

2 Preliminaries 
 

In this section we recall necessary definitions and results concerning Banach-

Kantorovich lattices.  

 

Let (Ω, Σ, 𝜇) be a space with complete finite measure, 𝐿0 = 𝐿0(Ω) be the 

algebra of classes of measurable functions on (Ω, Σ, 𝜇).  Consider a real vector 

space 𝐸.  
 

A transformation ∥⋅∥: 𝐸 ⟶ 𝐿0 is called vector-valued or 𝐿0–valued norm on 

𝐸, if it satisfies the following conditions:  

 

   i) ∥ 𝑥 ∥≥ 0 for all 𝑥 ∈ 𝐸; ∥ 𝑥 ∥= 0 ⟺ 𝑥 = 0;  

   ii)  ∥ 𝜆𝑥 ∥= |𝜆| ∥ 𝑥 ∥ for all 𝜆 ∈ 𝑅, 𝑥 ∈ 𝐸;  

   iii) ∥ 𝑥 + 𝑦 ∥≤∥ 𝑥 ∥ +∥ 𝑦 ∥ for all 𝑥, 𝑦 ∈ 𝐸.  

A pair (𝐸, ∥⋅∥) is said to be a lattice-normed space(LNS) over 𝐿0.  

An LNS 𝐸 is disjunctively decomposed or shortly, 𝑑 — decomposed, if the 

following axiom is fulfilled :  

 

For any 𝑥 ∈ 𝐸 and disjunct elements 𝑒1, 𝑒2 ∈ 𝐿0, satisfying ∥ 𝑥 ∥= 𝑒1 + 𝑒2, 
there exist 𝑥1, 𝑥2 ∈ 𝐸 such that 𝑥 = 𝑥1 + 𝑥2, ∥ 𝑥1 ∥= 𝑒1 and ∥ 𝑥2 ∥= 𝑒2.  
 

A net {𝑥𝛼} ∈ 𝐸 is (𝑏𝑜)– convergent to 𝑥 ∈ 𝐸, if a net {∥ 𝑥𝛼 − 𝑥 ∥} is (𝑜) – 

convergent to 𝐿0.  

 

We say that an LNS is (bo)– complete, if any (bo) – fundamental net {𝑥𝛼} (bo) 

– converges to some element of this space.  

 

Any 𝑑 —decomposable and (bo) – complete LNS over 𝐿0 is said to be a 

Banach-Kantorovich space (BKS) over 𝐿0 (Kusraev, 1985).  
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If a Banach-Kantorovich space is simultaneously a vector lattice and the norm 

is monotone, then it becomes a Banach — Kantorovich lattice.  

Let 𝑋 be a mapping, which maps every point 𝜔 ∈ Ω to some Banach space  

(𝑋(𝜔), ∥⋅. ∥𝑋(𝜔)) . In what follows, we assume that 𝑋(𝜔) ≠ {0} for all 𝜔 ∈ Ω.  

A function 𝑢 is said to be a section of 𝑋, if it is defined almost everywhere in 

Ω and takes its value 𝑢(𝜔) ∈ 𝑋(𝜔) for 𝜔 ∈ 𝑑𝑜𝑚(𝑢), where 𝜔 ∈ 𝑑𝑜𝑚(𝑢) is 

the domain of 𝑢.   
 

Let 𝐿 be some set of sections.  

 

Definition 2. 1.  (Gutman, 1995). A pair (𝑋, 𝐿) is said to be a measurable 

bundle of Banach spaces over Ω if  

 

  i. 𝜆1𝑐1 + 𝜆2𝑐2 ∈ 𝐿 for all 𝜆1, 𝜆2 ∈ ℝ and 𝑐1, 𝑐2 ∈ 𝐿, where 𝜆1𝑐1 + 𝜆2𝑐2: 𝜔 ∈
𝑑𝑜𝑚(𝑐1) ∩ 𝑑𝑜𝑚(𝑐2) → 𝜆1𝑐1(𝜔) + 𝜆2𝑐2(𝜔);  

  ii.  The function ||𝑐||: 𝜔 ∈ 𝑑𝑜𝑚(𝑐) → ||𝑐(𝜔)||𝑋(𝜔) is measurable for all 𝑐 ∈

𝐿;  

  iii. For every 𝜔 ∈ Ω the set {𝑐(𝜔): 𝑐 ∈ 𝐿, 𝜔 ∈ 𝑑𝑜𝑚(𝑐)} is dense in 𝑋(𝜔); 

A measurable Banach bundle (𝑋, 𝐿) is called measurable bundle of Banach 

lattices (MBBL), if (𝑋(𝜔), ∥⋅∥𝑋(𝜔)) are Banach lattices for all 𝜔 ∈ Ω and all 

𝑐1, 𝑐2 ∈ 𝐿 𝑐1 ∨ 𝑐2 ∈ 𝐿, where 𝑐1 ∨ 𝑐2: 𝜔 ∈ dom (𝑐1) ∩ dom (𝑐2) → 𝑐1(𝜔) ∨
𝑐2(𝜔). 
 

Henceforth, (𝑋, 𝐿) will be denoted just by 𝑋.  

A section 𝑠 is a step-section, if there are pairwise disjoint sets 𝐴1, 𝐴2, … , 𝐴𝑛 ∈
Σ and sections 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ 𝐿 such that ⋃ 𝐴𝑖

𝑛
𝑖=1 = Ω è 𝑠(𝜔) =

∑ 𝜒𝐴𝑖
𝑛
𝑖=1 (𝜔)𝑐𝑖(𝜔) for almost all 𝜔 ∈ Ω.  

 

A section 𝑢 is measurable, if for any 𝐴 ∈ Σ there is a sequence 𝑠𝑛 of step-

sections such that 𝑠𝑛(𝜔) → 𝑢(𝜔) for almost all 𝜔 ∈ 𝐴.  

 

Let 𝑀(Ω, 𝑋) be the set of all measurable sections. By symbol 𝐿0(Ω, 𝑋) we 

denote factorization of the 𝑀(Ω, 𝑋) with respect to almost everywhere 

equality. Usually, by 𝑢̂ we denote a class from 𝐿0(Ω, 𝑋), containing the 
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section 𝑢 ∈ 𝑀(Ω, 𝑋), and by ∥ 𝑢̂ ∥ we denote the element of 𝐿0(Ω), 
containing ∥ 𝑢(𝜔) ∥𝑋(𝜔).  

 

Let 𝑋 be an MBBL. We set 𝑢̂ ≤ 𝑣̂, if 𝑢(𝜔) ≤ 𝑣(𝜔) a.e. One can easily show 

that the relation 𝑢̂ ≤ 𝑣̂ constitutes a partial order on 𝐿0(Ω, 𝑋).  
 

If 𝑋 is an MBBL, then 𝐿0(Ω, 𝑋) is a Banach-Kantorovich lattice (Chilin & 

Ganiev, 2000).  

 

Let 𝛻𝜔, 𝜔 ∈ Ω be a family of complete Boolean algebras with strictly positive 

real-valued measures 𝜇𝜔.  We set 𝜌𝜔(𝑒, 𝑔) = 𝜇𝜔(𝑒 △ 𝑔), 𝑒, 𝑔 ∈ 𝛻𝜔.  Then 

(𝛻𝜔, 𝜇𝜔)are complete metric spaces. Consider the transformation 𝛻, which 

assigns some Boolean algebra 𝛻𝜔 to every point 𝜔 ∈ Ω.  Let 𝐿 be a non-empty 

set of sections 𝛻.  

     

Definition 2. 2.  A pair (𝛻, 𝐿) is called a measurable bundle of boolean 

algebras over Ω, if  

 

 i)  (𝛻, 𝐿) is a measurable bundle of metric spaces (Chilin & Ganiev, 2000);  

 ii)  If 𝑒 ∈ 𝐿, then 𝑒⊥ ∈ 𝐿, where 𝑒⊥: 𝜔 ∈ dom (𝑒) → 𝑒⊥(𝜔);  

iii)  If 𝑒1, 𝑒2 ∈ 𝐿, then 𝑒1 ∨ 𝑒2 ∈ 𝐿, where  

𝑒1 ∨ 𝑒2: 𝜔 ∈ dom (𝑒1) ∩ dom (𝑒2) → 𝑒1(𝜔) ∨ 𝑒2(𝜔)   (1) 

Let 𝑀(Ω, 𝛻) be the set of measurable sections, 𝛻̂– factorization of 𝑀(Ω, 𝛻) 
with respect to almost everywhere equality.  Define a transformation 𝜇̂: 𝛻̂ →

𝐿0(Ω) by 𝜇̂(𝑒̂) = 𝑓, where 𝑓 is a class containing the function 𝑓(𝜔) =

𝜇𝜔(𝑒(𝜔)). Evidently, 𝜇̂ is well defined.  It is well known that (𝛻̂, 𝜇̂) is a 

complete boolean algebra with strictly positive 𝐿0(Ω) – valued modulated 

measure 𝜇̂, moreover, the boolean algebra 𝛻(Ω) of all idempotents from 

𝐿0(Ω) is identified with regular sub-algebra in 𝛻̂ and 𝜇̂(𝑔𝑒̂) = 𝑔𝜇̂(𝑒̂) for all 

𝑔 ∈ 𝛻(Ω) and 𝑒̂ ∈ 𝛻̂.  By 𝐿0(𝛻̂, 𝜇̂) we denote an order complete vector lattice 

𝐶∞(𝑄(𝛻̂)), where 𝑄(𝛻̂) is the Stonian compact associated with complete 

Boolean algebra 𝛻̂. Following the well-known scheme of the construction of 

𝐿𝑝-spaces, a space 𝐿𝑝(𝛻̂, 𝜇̂) can be defined by  

𝐿𝑝(𝛻̂, 𝜇̂) = {𝑓 ∈ 𝐿0(𝛻̂, 𝜇̂): ∫ | 𝑓|
𝑝𝑑𝜇̂ − exist },   𝑝 ≥ 1 (2) 

where 𝜇̂ is an 𝐿0(Ω)-valued measure on 𝛻̂.  
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It is known (Kusraev, 1985) that 𝐿𝑝(𝛻̂, 𝜇̂) is a BKS over 𝐿0(Ω) with respect to 

the 𝐿0(Ω)-valued norm  ∥ 𝑓 ∥𝐿𝑝(𝛻̂,𝜇̂)= (∫ | 𝑓|
𝑝𝑑𝜇̂)1/𝑝. Moreover, 𝐿𝑝(𝛻̂, 𝜇̂) is a 

Banach-Kantorovich lattice (Kusraev, 1985).  

 

An even continuous convex function 𝑀:𝑅 → [0,∞) is called an 𝑁-function, if 

lim
𝑡→0

𝑀(𝑡)

𝑡
= 0 and lim

𝑡→∞

𝑀(𝑡)

𝑡
= ∞. An N-function 𝑀 is said to satisfy △2-

condition on [𝑠0, ∞), 𝑠0 ≥ 0, if there exists constant 𝑘 such that 𝑀(2𝑠) ≤
𝑘𝑀(𝑠) for every 𝑠 ≥ 𝑠0 (see ( Krasnoselskii  et al., 1961)).  The set  

 

𝐿𝑀
0 : = 𝐿𝑀

0 (𝛻̂, 𝜇̂): = {𝑥 ∈ 𝐿0(𝛻̂):𝑀(𝑥) ∈ 𝐿1(𝛻̂, 𝜇̂)}    (3) 

is called the Orlicz 𝐿0-class, and the vector space  

𝐿𝑀: = 𝐿𝑀(𝛻̂, 𝜇̂): = {𝑥 ∈ 𝐿0(𝛻̂, 𝜇̂): 𝑥𝑦 ∈ 𝐿1(𝛻̂, 𝜇̂)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝐿𝑁
0 } (4) 

is called the Orlicz 𝐿0-space, where 𝑁 is the complementary 𝑁-function to 𝑀.  
 

We notice that, 𝐿𝑀(𝛻̂, 𝜇̂) ⊂ 𝐿1(𝛻̂, 𝜇̂).  

Define the 𝐿0-valued Orlicz norm on 𝐿𝑀(𝛻̂, 𝜇̂) as follows:  

 

∥ 𝑥 ∥𝑀: = sup {|∫ 𝑥 𝑦𝑑𝜇̂|: 𝑦 ∈ 𝐴(𝑁)} , 𝑥 ∈ 𝐿𝑀(𝛻̂, 𝜇̂),   (5) 

where 𝐴(𝑁) = {𝑦 ∈ 𝐿𝑁
0 : ∫𝑁 (𝑦)𝑑𝜇̂ ≤ 𝟏} and 𝟏 is identity element of 𝐿0. The 

pair (𝐿𝑀(𝛻̂, 𝜇̂), ∥⋅∥𝑀) is a Banach–Kantorovich lattice which is called the 

Orlicz–Kantorovich lattice associated with the 𝐿0-valued measure (Zakirov & 

Chilin, 2009), (Zakirov, 2007). 

 

Theorem 2.3. (Zakirov & Chilin, 2009). If the 𝑁-function 𝑀 meets the △2-

condition then the Orlicz-Kantorovich lattice 𝐿𝑀(𝛻̂, 𝜇̂) is isometrically and 

order isomorphic to 𝐿0(𝛺, 𝑋), where (𝑋, 𝐿) is the measurable Banach bundle 

over 𝛺 such that 𝑋(𝜔) = 𝐿𝑀(𝛻𝜔, 𝜇𝜔) and  

𝐿 = {∑ 𝛼𝑖
𝑛
𝑖=1 𝑒𝑖: 𝛼𝑖 ∈ ℝ, 𝑒𝑖 ∈ 𝑀(𝛺, 𝛻), 𝑖 = 1, 𝑛, 𝑛 ∈ ℕ}.  
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3 A Description of Projective Contractions in the 

contractions in the Orlicz- Kantorovich lattice 
 

In this section we will show that any positive projective contractions 𝑄 with 

𝑄𝟏 = 𝟏 in the Orlicz —Kantorovich lattices 𝐿𝑀(𝛻̂, 𝜇̂) can be represented in 

the form  

 

𝑄(𝑓)(𝜔) = 𝐸𝜔(𝑓(𝜔)|𝛻𝜔
1)      (7) 

 

for any 𝑓 ∈ 𝐿𝑀(𝛻̂, 𝜇̂) and for almost all 𝜔 ∈ Ω, where 𝐸𝜔(⋅ |𝛻𝜔
1) is conditional 

expectation operator. 

 

Proposition 3.1.  Let 𝑀 be an 𝑁-function, and 𝐸(⋅ |𝛻̂1): 𝐿1(𝛻̂, 𝜇̂) →

𝐿1(𝛻̂
1, 𝜇̂1) be conditionally expectation operator. Then  

 

𝐸(𝐿𝑀(𝛻̂, 𝜇̂)|𝛻̂
1) ⊂ 𝐿𝑀(𝛻̂, 𝜇̂)     (8) 

and 

∥ 𝐸(⋅ |𝛻̂1) ∥𝐿𝑀(𝛻̂,𝜇̂)→𝐿𝑀(𝛻̂,𝜇̂)= 𝟏.      (9) 

 

 Proof:  Since ∥ 𝐸(𝑓|𝛻̂1) ∥𝐿1(𝛻̂,𝜇̂)≤∥ 𝑓 ∥𝐿1(𝛻̂,𝜇̂) for any 𝑓 ∈ 𝐿1(𝛻̂, 𝜇̂) and 

𝐸(𝟏|𝛻̂1) = 𝟏 by Proposition 3.1 (Zakirov & Chilin, 2009) 

 

𝐸(𝐿𝑀(𝛻̂, 𝜇̂)|𝛻̂
1) ⊂ 𝐿𝑀(𝛻̂, 𝜇̂).     (10) 

As  

∥ 𝐸(𝑓|𝛻̂1) ∥𝑀 (𝜔) =∥ 𝐸(𝑓|𝛻̂
1)(𝜔) ∥𝐿𝑀(𝛻𝜔,𝜇𝜔)=∥ 𝐸𝜔(𝑓(𝜔)|𝛻𝜔

1) ∥𝐿𝑀(𝛻𝜔,𝜇𝜔)≤

∥ 𝑓(𝜔) ∥𝐿𝑀(𝛻𝜔,𝜇𝜔)=∥ 𝑓 ∥𝑀 (𝜔) 

(11) 

 a.e. we get  



  

79 

 

∥ 𝐸(𝑓|𝛻̂1) ∥𝑀≤∥ 𝑓 ∥𝑀      (12) 

or  

∥ 𝐸(⋅ |𝛻̂1) ∥𝐿𝑀(𝛻̂,𝜇̂)→𝐿𝑀(𝛻̂,𝜇̂)≤ 𝟏.     (13) 

As ∥ 𝐸𝜔(𝑓(𝜔)|𝛻𝜔
1) ∥𝐿𝑀(𝛻𝜔,𝑚𝜔)=∥ 𝑓(𝜔) ∥𝐿𝑀(𝛻𝜔,𝜇𝜔) for almost all 𝜔 ∈ Ω and 

for any {𝑓(𝜔)}𝜔∈Ω = 𝑓 with 𝑓(𝜔) ∈ 𝐿𝑀(𝛻𝜔
1, 𝜇𝜔

1 ) we have that  

                                 ∥ 𝐸(⋅ |𝛻̂1) ∥𝐿𝑀(𝛻̂,𝜇̂)→𝐿𝑀(𝛻̂,𝜇̂)= 𝟏.   (14) 

Let N-function 𝑀 is said to satisfy △2-condition. 

Theorem 3.2. Let 𝑄: 𝐿𝑀(𝛻̂, 𝜇̂) →  𝐿𝑀(𝛻̂, 𝜇̂)   be a linear positive operator. If  

1.  𝑄2 = 𝑄;  

       2. ∥ 𝑄 ∥𝐿1(𝛻̂,𝜇̂)→𝐿1(𝛻̂,𝜇̂)≤ 1;  

 3.  𝑄(𝟏) = 𝟏;  

then 

i. ∥ 𝑄 ∥𝐿𝑀(𝛻̂,𝜇̂)→𝐿𝑀(𝛻̂,𝜇̂)≤ 𝟏; 

ii. 𝑄(𝑓)(𝜔) = 𝐸𝜔(𝑓(𝜔)|𝛻𝜔
1)  for any 𝑓 ∈ 𝐿𝑀(𝛻̂, 𝜇̂)  and for almost 

all 𝜔 ∈ 𝛺. 

 Proof: 

Let 𝑄𝜔be a linear contractions on 𝐿1(𝛻𝜔, 𝜇𝜔) constructed in Theorem 3.1, 

such that 𝑄(𝑓)(𝜔) = 𝑄𝜔(𝑓(𝜔))  for 𝑓 ∈ 𝐿1(𝛻̂, 𝜇̂) and for almost all 𝜔 ∈ Ω. 

Since ∥ 𝑄𝜔 ∥𝐿1(𝛻𝜔,𝜇𝜔)→𝐿1(𝛻𝜔,𝜇𝜔)≤ 1 and 𝑄𝜔(𝟏𝜔) = 𝟏𝜔 by ( Krasnoselskii  et 

al., 1961) (II. sec. 4. Item 6) we have that  ∥ 𝑄𝜔 ∥𝐿𝑀(𝛻𝜔,𝜇𝜔)→𝐿𝑀(𝛻𝜔,𝜇𝜔)≤ 1.   

Using Proposition 2.3 (Zakirov & Chilin, 2009)  we get that 

 (∥ 𝑄(𝑓) ∥𝐿𝑀(𝛻̂,𝜇̂))(𝜔) =∥ 𝑄𝜔(𝑓(𝜔)) ∥𝐿𝑀(𝛻𝜔,𝜇𝜔)≤∥ 𝑓(𝜔) ∥𝐿𝑀(𝛻𝜔,𝜇𝜔)=∥

𝑓 ∥𝐿𝑝(𝛻̂,𝜇̂) (𝜔) 

for almost all 𝜔 ∈ Ω,  i.e. 

∥ 𝑄(𝑓) ∥𝐿𝑀(𝛻̂,𝜇̂)≤∥ 𝑓 ∥𝐿𝑝(𝛻̂,𝜇̂) or ∥ 𝑄 ∥𝐿𝑀(𝛻̂,𝜇̂)→𝐿𝑀(𝛻̂,𝜇̂)≤ 𝟏.    (15) 
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 As 𝑄𝜔
2 = 𝑄𝜔, ∥ 𝑄𝜔 ∥𝐿𝑀(𝛻𝜔,𝜇𝜔)→𝐿𝑀(𝛻𝜔,𝜇𝜔)≤ 1, by  (Rao, 1965)  there exists a 

unique regular sub-algebra 𝛻𝜔
1 of 𝛻𝜔, such that      

              

𝑄𝜔 = 𝐸𝜔(∙ |𝛻𝜔
1).       (16) 

 Hence 𝑄(𝑓)(𝜔) = 𝐸𝜔(𝑓(𝜔)|𝛻𝜔
1) for any  for any 𝑓 ∈ 𝐿𝑀(𝛻̂, 𝜇̂)  and for 

almost all 𝜔 ∈ Ω. 

Theorem 3.3. Let  𝑓 ∈ 𝐿1(𝛻̂, 𝜇̂)   then 

i. |𝐸(𝑓|𝛻̂1)| ≤ 𝐸(|𝑓|̂|𝛻̂1); 

ii.  Let  𝑓𝑛 ∈ 𝐿1(𝛻̂, 𝜇̂)  such that 

iii.  

1)  |𝑓𝑛| ≤ 𝑔  ̂ ∈ 𝐿1(𝛻̂, 𝜇̂)  and 

2) 𝑓𝑛
(𝑜)
→ 𝑓     then 

𝐸(𝑓𝑛|𝛻̂
1)

(𝑜)
→ 𝐸(𝑓|𝛻̂1).      (17) 

Proof:  

(i) The numerical case proof is applicable here  (see ( Doob, 1953)). 

(ii) From 1) it follows that  |𝑓𝑛(𝜔)| ≤ 𝑔(𝜔) ∈ 𝐿1(𝛻𝜔, 𝜇𝜔)  then by ( Doob, 

1953)  𝐸𝜔(𝑓𝑛(𝜔)|𝛻𝜔
1)
(𝑜)
→ 𝐸𝜔(𝑓(𝜔)|𝛻𝜔

1) for almost all ω ∈ Ω.   

Since (𝐸(𝑓𝑛|𝛻̂
1) − 𝐸(𝑓|𝛻̂1)) (𝜔) = 𝐸𝜔(𝑓𝑛(𝜔)|𝛻𝜔

1) − 𝐸𝜔(𝑓(𝜔)|𝛻𝜔
1) 

 (18) 

 we get that (𝐸(𝑓𝑛|𝛻̂
1) − 𝐸(𝑓|𝛻̂1)) (𝜔)

(𝑜)
→ 0  for almost all ω ∈ Ω.   Then 

using Theorem 4.1  (Ganiev, 2006)  we obtain 

𝐸(𝑓𝑛|𝛻̂
1)

(𝑜)
→ 𝐸(𝑓|𝛻̂1).      (19) 
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Theorem  3.4.  If  𝑇: 𝐿0 → 𝐿0 is 𝐿0-linear and 𝐿0-bounded operator and        

 𝑓 ∈ 𝐿1(𝛻̂, 𝜇̂), then  

𝐸(𝑇(𝑓)|𝛻̂1) = 𝑇(𝐸(𝑓|𝛻̂1)). 

 

4 Conclusion  
 

Any positive projective contractions 𝑄 with 𝑄𝟏 = 𝟏 in the Orlicz —

Kantorovich lattices 𝐿𝑀(𝛻̂, 𝜇̂) can be represented in the form   

 

                                       𝑄(𝑓)(𝜔) = 𝐸𝜔(𝑓(𝜔)|𝛻𝜔
1)  

for any 𝑓 ∈ 𝐿𝑀(𝛻̂, 𝜇̂) and for almost all 𝜔 ∈ Ω, where 𝐸𝜔(⋅ |𝛻𝜔
1) is conditional 

expectation operator. 
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