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Abstract: The effect of uniform rotation on the onset of steady Marangoni convection in a horizontal
fluid layer heated from below is considered theoretically. The fluid layer is bounded below by a rigid
plane boundary with a prescribed heat flux and above by a free non-deformable surface subject to a
uniform vertical temperature gradient. The theoretical analysis follows the usual small-disturbance
approach of perturbation theory and leads, at the marginal state, to a functional relation between the
Marangoni and Taylor numbers which is then computed numerically.
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INTRODUCTION

The onset of surface-tension-gradients-driven (Marangoni) convection in a layer of fluid which is
heated (or cooled) from below is a fundamental model problem for several material processing
technologies, such as semiconductor crystal growth from melt, in the microgravity environment of
space. As Schwabe [7] describes, typically in microgravity surface tension rather than buoyancy forces
are the dominant mechanism driving the flow. In his pioneering linear stability theory, Pearson [5]
considered both the so-called “conducting” case of a constant temperature rigid lower boundary of the
horizontal fluid layer at which no perturbation in temperature is allowed and the so-called “insulating”
case of a constant heat flux lower boundary at which no perturbation in the heat flux is allowed.
Pearson [5] showed that variation of surface tension with temperature will drive steady Marangoni
convection in a fluid layer provided that the non-dimensional Marangoni number, A, (defined in
Section 2) is sufficiently large and positive. Since for most fluids surface tension decreases with
increasing temperature, this means that steady convection only occurs when the layer is heated
sufficiently strongly from below. The most significant limitation of Pearson’s [5] work was that it
considered only the case of a non-deformable free surface, corresponding to the limit of strong surface
tension. Subsequently, Scriven and Sternling [8] extended the work of Pearson [5] to include a
deformable free surface with capillary but not gravity waves. Garcia-Ybarra ef al. [2] and Gouesbet et
al. [3] performed extensive numerical calculations for the insulating problem with gravity waves at the
free surface included.

All of the work mentioned above excluded the effect of rotation of the fluid layer. Vidal and Acrivos
[9] were the first to analyze the effect of rotation on Marangoni convection in the concucting case.
McConaghy and Finlayson [4] re-examined Vidal and Acrivos’ [9] conclusion on the possibility of
oscillatory convection. In this work we use the classical linear stability theory to study the effect of
rotation on the marginal curves for the onset of steady Marangoni convection in the insulating case.
The structure of the paper is as follows. In Sections 2 and 3 we briefly formulate and solve the
appropriate linear stability problem, respectively. In Section 4 we present the results of numerical
calculations which illustrate the effect of varying the problem parameters on the marginal curves and
hence on the critical value of M for the onset of convection. Finally, in Section 5 we summarize the
work.

MATHEMATICAL FORMULATION

We wish to examine the stability of a horizontal layer of quiescent fluid of thickness & which is
unbounded in the horizontal x- and y-directions. The layer is kept rotating uniformly around a vertical
axis with a constant angular velocity . We shall formulate the problem in a general way in which the
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layer is bounded below by a thermally insulating planar boundary and above by a free deformable
surface, subject to a uniform vertical temperature gradient (see Figure 1)

The fluid is Boussinesquian with a mass density p assumed to vary linearly on the temperature
pP=p [l -y (T-T9], (a>0), (H

where o is the volume expansion coefficient and 7, a reference arbitrary tempearature. The variations
of surface tension y with the temperature 7'is assumed in the form

¥=2o=u1= To) )

where y is a reference value of surface tension and 7 is the rate of change of surface tension with
temperature.

Figure 1: Sketch of the one-layer model

The deformation of the interface is represented by the relation

z=d+ n(xy.1) (3)
wherein 7(x,y,1) is an a-priori unknown deformation with respect to the mean thickness d.
In the reference state, the fluid is at rest with respect to the rotating axes and heat propagates only by

conduction. When motion sets in, the velocity v = (,v,w), pressure p and temperature 7 fields obey the
usual balance equations of mass, momentum and energy (cf. Chandrasekhar [1] ),

V.v =0 “)
ov ’ >
p°[5t—+ (v:V)v+20x vJ = —Vp+ uVv - pge, (5
i_T +(v- T = « VT(6)
t

where g = (0,0, —g) is the gravitational field, e,=(0,0,1) is a unit vector in the z-direction,  is the
viscosity, « is the thermal diffusivity and V? = &%/6x* + 8*/0y* + 8*/d2° is the Laplacian operator.

At the deformably free surface, at z = d + n(x,y,f), the boundary conditions comprise of the kinematic,
the heat flux, the two shear stress and the normal stress conditions which are given by, respectively,

i L

Y == w, )
ot ox oy
kKVT-n+hl = 0, (3
0¥
WDy = LT, 9
HDx oF &)
(Pa"P) T+ 2/1an|= yV-n (10)

501



STSS 2004

where 4 is the heat transfer coefficient, /& is the thermal conductivity of the fluid, p, is the pressure of
the atmosphere, Dj; is the rate of strain tensor, t and n denote tangential and normal unit vectors,
respectively. At the lower, rigid and plane, boundary we have the condition of continuity of velocity
between the solid and the fluid. This lower boundary is subject to a prescribed heat flux.

We introduce infinitesimal disturbances to the governing equations and boundary conditions by setting
(u,v,w, p,p, )= (0,00,5, p.T)+u v w,p, p'i0"), (11)

where the primed quantities represent the perturbed variables. A set of scales d, &°, k, AT is chosen for
distance, time and temperature, respectively. The perturbed quantities in normal mode forms are

w'| | W(2)
0’ @ 2 i(ayx+ayy) ot
= ,() 2 .
& K(z)
n' E

where a, and a, are wavenumbers of disturbances in the x and y directions, respectively. /', ®, K and £
are amplitudes of vertical velocity, temperature, vertical vorticity and deflection of thz free upper
surface, respectively. The growth parameter ois in general a complex variable denoted by o= o, + ig;,
where o, is the growth rate of the instability and o; is the frequency. If o, > 0, the disturbances grow
and the system becomes unstable. If o, < 0, the disturbances decay and the system becomes stable.
When o, =0, the instability of the system, at the marginal state, sets in stationarily, provided o; =0, or
oscillatorily, provided o; # 0.

The governing equations of the perturbed state in dimensionless forms, assuming the Boussinesq
approximation, are

(D*- ) D* - a* - oP," YW -T, DK = a°R'® (13)
D>~ -aP7HK = -DW (14)
(D2~02)® = _W (15)
subject to
W -off = 0, (16)
C [(D*-3a*- o P, YDW - T, K] - d*(@+B,)E = 0, a7
D+ W+aM(®-E) = 0, (18)
DO +B(®-E) = 0, (19)
DK = 0, (20)

evaluated on the undisturbed position of the upper free surface z = 7, and

w =0, 1)
De =0, 22)
Kk =0, (23)
DW =0, 24)

evaluated on the lower rigid boundary z = 0, where the operator D =d/dz denotes differertiation with
respect to the vertical coordinate z and a = (a?+a,)'” is the horizontal wave number of the

disturbance. The starred dimensionless numbers are defined by R'= R/2", M* = M/2, T,* = T,/a', C*
= 7C,. B* = BJ/m, B,* = B,/ 77, where the Rayleigh number, R = agATd’/vk , where v is the kinematic
viscosity, the Marangoni number, M = yAd/pvx, the Taylor number, 7, = 4 Q*d’/ v*, the capillary
number, C, = mvk/yd, the Biot number, B,= hd/k, the Bond number, B, = ;gdz/y, and the Prandtl
number, P,= v/k. The Rayleigh number R accounts for buoyancy destabilizing effect. Th: number A/
accounts for surface tension destabilizing effect. The Taylor number Ta represents the square of the
ratio between Coriolis and frictional forces. The capillary number C, shows an idea of the rigidity of
the upper free surface of the fluid layer. The Biot number B, represents the heat flux flow through the
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interface, and the physical parameter Bond number B, is the ratio between gravity effect in keeping the
surface flat and the effect of surface tension in making a meniscus. The Prandtl number, P,, stands for
the ratio between thermal and heat diffusivities.

SOLUTION OF THE LINEARIZED PROBLEM
Combining equations (13) — (15) then gives a single linear cighth-order ordinary differential equation
for ®,

D*-a - 0) [(D*-D* - - PN+ T, D* 10+ PR(D? - - o,y ©=0. (25)
Equation (25) together with the boundary conditions (16) - (24) constitute a linear eigenvalue problem
for the unknown temporal exponent ¢. Relation (17) gives the expression for the surface deflection £
in terms of the other quantities. In the general case o # 0 we seek solutions in th2 forms

W(z)=ACe*, K(2)=BCe%, O(z2)=Ce%, (27)
where the complex quantities 4, B and C and the exponent ¢ are to be determired. Substituting these
forms into the equations (13) — (15) and eliminating 4, B and C we obtain an eighth-order algebraic

equation for & namely

C-a-0)(E-aNE-a-oP,)V+T,810+dR(£ -a*-oP,)© =0,

with eight distinct roots &, . . ., &. Denoting the values of 4, B and C corresponcing to & fori =1, ...,8
by 4;, B; and C; we can use equations (14) and (15) to determine 4; and B; to be
: A
A=l -d-, B=-—ah -

g2 2 -1?
& —a —ok,

fori=1, ... 8. The boundary conditions (16) — (24) can be used to determine tte eight unknowns ',
...,Cs (up to an arbitrary multiplier), and the general solution to the stability problem is therefore

8 ) 8 8 i
W(z)=) A,Ce", K@)=) BCe"™, O(z)=) Ce" (29)
i=1 =1

=1

Imposing boundary conditions (16) — (24) yields a linear system PA = 0, wherec A = [4,, ....45]". In
general, the 8 x 8 coefficient matrix P (whose entries depend on a, M, R, o, C, T,, P,, B, and B)) is
complex and may be rather complicated, and so, in general, it has to be calculated either numerically
or symbolically using a symbolic algebra package. In this work we use both zpproaches. We use a
FORTRAN 77 program employing the Numerical Algorithms Group (NAG) routine FO3ADF to
evaluate the determinant of P using LU factorization with partial pivoting. A mcdification of Powell’s
[6] hybrid algorithm, which is a combination of Newton's method and the method of steepest descent,
implemented using NAG routine COSNBF is then used to find the eigenvalues of P by solving the two
non-linear equations obtained from the real and imaginary parts of the determinant of P.

MARGINAL STABILITY CURVE

In this work we shall concentrate on the problem of the onset of steady Marangoni convection in a
horizontal fluid layer with non-deformable free surface, i.e. we set o= 0, R = 0 and C, = 0. The
marginal stability curves in the (a,M) plane on which o, = 0 separate regions of unstable modes with o,
> ( from those of stable modes with o, < 0. The critical Marangoni number, denoted by A, for the
onset of convection is the global minimum of M over a > 0. The corresponding critical wave number is
denoted by a..
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For steady convection, the dispersion relation F(a, M, T,, B;) = 0 takes the linear form D,+ MD, =0,
where D; and D, are two 6 x 6 determinants which depend on the whole set of parameters of the
problem except M. Given any set of values for 7, B;, we can determine the Marangoni number as a
function of the wave number a.
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Figure 2: Numerically-calculated marginal curves for the onset of steady Marangoni convection plotted
as function of @ in the case C, = 0 and B; = 0 for several values of 7,

Figure 2 shows typical marginal stability curves for the onset of steady Marangoni convection for
various values of the Taylor number 7a in the case C, =0 and B; = 0. As a validation of cur algorithm,
we recover the marginal curve obtained by Pearson [5] for the pure Marangoni problem without
rotation, 7, = 0, having the critical value M, = 48 at a. = 0 in the case B, = 0. Figure 2 clearly shows that
the marginal curves are shifted upwards as 7, increases, i.e. the effect of rotation is to stabilize the
layer. Physically, rotation introduces vorticity into the fluid which then causes the fluid to move in the
horizontal planes with higher velocity. The velocity of the fluid perpendicular to the planes reduces,
thus the onset of convection is inhibited (Chandrasekhar [1]).
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e
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Figure 3. Numerically-calculated (a) M, and (b) a. as functions of 7, for C', =0 in the case B, = 0.

The critical Marangoni number determines, via the definition of the Marangoni number, the critical
temperature difference A7, required for a particular fluid layer perturbed with disturbances of wave
number a to be in the marginal state, which means as much as being just on the verge of instability. At
AT just above AT, the entire infinite fluid layer should change spontaneously from the state of rest to
convective motions. In Figures 3(a) and 3(b) we plot the numerically-calculated values of M. and a,,
respectively, as functions of 7, in the case C, = 0 and B; = 0. Clearly M, and a. are monotonically
increasing functions of 7, which show that rotation stabilize the layer and the cell size gets bigger.

CONCLUSIONS

In this work we used classical linear stability theory to investigate the effect of rotation on the onset of
steady Marangoni convection in a horizontal planar layer of fluid heated from below with a prescribed
heat flux at its lower boundary. The results showed the stabilizing effect of rotation.
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