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Abstract: The effect of uniform rotation on the onset of steady Marangoni convection in a horizontal
fluid layer heated from below is considered theoretically. The fluid layer is bounded below by a rigid
plane boundary with a prescribed heat flux and above by a free non-defonnable surface subject to a
uniform vertical temperature gradient. The theoretical analysis follows the usual small-disturbance
approach of perturbation theory and leads, at the marginal state, to a functional.relation between the
Marangoni and Taylor numbers which is then computed numerically.
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INTRODUCTION

The onset of surface-tension-gradients-driven (Marangoni) convection in a layer of fluid which is
heated (or cooled) from below is a fundamental model problem for several material processing
technologies, such as semiconductor crystal growth from melt, in the microgravity environment of
space. As Schwabe [7] describes, typically in microgravity surface tension rather than buoyancy forces
are the dominant mechanism driving the flow. In his pioneering linear stability theory. Pearson [5]
considered both the so-called "conducting" case of a constant temperature rigid lower boundary of the
horizontal fluid layer at which no perturbation in temperature is allowed and the so-called "insulating"
case of a constant heat flux lower boundary at which no perturbation in the heat flux is allowed.
Pearson [5] showed that variation of surface tension with temperature will drive steady Marangoni
convection in a fluid layer provided that the non-dimensional Marangoni number, M. (defined in
Section 2) is sufficiently large and positive. Since for most fluids surface tension decreases with
increasing temperature, this means that steady convection only occurs when the layer is heated
sufficiently strongly from below. The most significant limitation of Pearson's [5] wort was that it
considered only the case of a non-deformable free surface, corresponding to the limit of strong surface
tension. Subsequently, Scriven and Sternling [8] extended the work of Pearson [5] to include a
deformable free surface with capillary but not gravity waves. Garcia-Ybarra et at. [2] and Gouesbet et
at. [3] performed extensive numerical calculations for the insulating problem with gravity waves at the
free surface included.

All of the work mentioned above excluded the effect of rotation of the fluid layer. Vidal and Acrivos
[9] were the first to analyze the effect of rotation on Marangoni convection in the conc'ucting case.
McConaghy and Finlayson [4] re-examined Vidal 3l1d Acrivos' [9] conclusion on the possibility of
oscillatory convection. In this work we use the classical linear stability theory to study the effect of
rotation on the marginal curves for the onset of steady Marangoni convection in the insulating case.
The structure of the paper is as follows. In Sections 2 and 3 we briefly fonnulate and solve the
appropriate linear stability problem, respectively. In Section 4 we present the results of numerical
calculations which illustrate the effect of varying the problem parameters on the marginal curves and
hence on the critical value of M for the onset of convection. Finally, in Section 5 we summarize the
work.

MATHEMATICAL FORMULATION

We wish to examine the stability of a horizontal layer of quiescent fluid of thickness d which is
unbounded in the horizontal x- alld y-directions. The layer is kept rotating uniformly around a vertical
axis with a constant angular velocity n We shall formulate the problem in a general way in which the
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where h is the heat transfer coefficient, k is the thermal conductivity of the fluid, Pa is the pressure of
the atmosphere, D ij is the rate of strain tensor, t and n denote tangential and normal unit vectors,
respectively. At the lower, rigid and plane, boundary we have the condition of continuity of velocity
between the solid and the fluid. This lower bOlmdary is subject to a prescribed heat flux.

We introduce infinitesimal disturbances to the governing equations and boundary conditions by setting

(u, v, w, p, P, n = (0,0,0, p, P, T) + (u ' , Vi, Wi, pi, p',O'), (11)

where the primed quantities represent the perturbed variables. A set of scales d, dZ
, K, f;.T is chosen for

distance, time and temperature, respectively. The perturbed quantities in normal mode forms are

[

WI] lW(Z)]eI = <9(z) e/{UJ,A+lJyY)+o1

(' K(z)

1]' £

(12)

where ax and ay are wavenumbers of disturbances in the x and y directions, respectively. W, e, K and E
are amplitudes of vertical velocity, temperature, vertical vorticity and deflection of the free upper
surface, respectively. The growth parameter (J'is in general a complex variable denoted by (J'= (J', + i(J'i,
where (J', is the growth rate of the instability and a; is the frequency. If (J', > 0, the disturbances grow
and the system becomes unstable. If (J', < 0, the disturbances decay ,md the system becomes stable.
When (J', =0, the instability of the system, at the marginal state, sets in stationarily, provided (J'j =0, or
oscillatorily, provided (J'j '* 0.

The governing equations of t.he perturbed state in dimensionless forms, assuming the Boussinesq
approximation, are

•

(D2
- aZ)(Dz - aZ- (J'pr-

I )W - To· DK
DZ- aZ- (J'Pr-1)K =-DW

(Dz - aZ
) e = -W

subject to

W - (J'E = °
C;[(Dz - 3az -' (J'P,-I)DW - To· KJ - aZ(az+Bo·)£
(Dz + aZ)W + aZ/II{( e -1:,) = 0,
De + B;·( e - E) = 0,
DK = 0,

0,

(13)
(14)
(15)

(16)
(17)
(18)
(19)
(20) •evaluat.ed on the undisturbed position of the upper free surface z = ff, and

W =0,
De =0,
K =0,
DW =0,

(21)
(22)
(23)
(24)

evaluated on the lower rigid boundmy z = 0, where the operator D =d/dz denotes differer,tiation with

respect to the vertical coordinate z and a = (a; + a~ ) l/Z is the horizontal wave number of the

disturbance. The starred dimensionless numbers are defined by R·= RI;r4, M* = Mitt, 1~* = Ta/1r4, C,*
= nC" B;* = B;lff, Bo* = Boltt, where the Rayleigh number, R = agf;.Trf/YK , where Y is the kinematic
viscosity, the Marangoni number, M = yf;.dIPJVK, the Taylor number, To = 4 D?~I y

Z
, the capillary

number, C, = PJvK!Yod, the Biot number, B i=hdlk, the Bond number, Bo = pg~/y, and the Prandtl
number, P, = vIK:. The Rayleigh number R accounts for buoyancy destabilizing effect. Th,~ number M
accounts for surface tension destabilizing effect. The Taylor number Ta represents the square of the
ratio between Coriolis and frictional forces. The capillary number C, shows ,m idea of the rigidity of
the upper fTee surface of tlle fluid layer. The Biot number B i represents the heat flux flow through the
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interface, and the physical parameter Bond number Bo is the ratio between gravity effect in keeping the
swface flat and the effect of surface tension in making a meniscus. The Prandtl number, Pr , stands for
the ratio between thermal "ll1d heat diffusivities.

SOLUTION OF THE LINEARIZED PROBLEM

Combining equations (13) - (15) then gives a single linear eighth-order ordinary differential equation
fore,

Equation (25) together Witil the boundary conditions (16) - (24) constitute a linear eigenvalue problem
for ilie unknown temporal exponent (J. Relation (17) gives the expression for the surface deflection E
in terms of the other quantities. In the general case CY'1' 0 we seek solutions in the forms

W(z)=ACe~z, K(z)=BC e9 , ecz)=ce9, (27)

where the complex quantities A, Band C and the exponent z: are to be determined. Substituting these
forms into the equations (13) - (15) and eliminating A, Band C we obtain an eighth-order algebraic
equation for ~, namely

with eight distinct roots r;1, ... , r;s. Denoting the values ofA, B and C corresponding to Qfor i =1, ... ,8
by Ai, Bi and C j we can use equations (14) and (15) to determine Ai and B i to be

A i =-(e-a2 -cy), B=- ~jAi
, ):2_ 2_ p-I'

':>i a (J' r

(28)

for i = 1, ... ,8. The boundary conditions (16) - (24) can be used to determine tte eight unknowns C1,

... ,Cx (up to an al'bitrary multiplier), and. the general solution to the stability problem is therefore

8

W(z) = 'LA,C,.e';'z ,
;=1

8

K(z) = 'LBjC,.e';"z,
;=1

s
e(z) = 'LCje';':

i-:l

(29)

Imposing boundary conditions (16) - (24) yields a linear system PA = U, where A = [AI, ... ,AS]T In
general, ilie 8 x 8 coefficient matrix P (whose entries depend on a, M, R, 0", C., To, Pr, Bo and Bi) is
complex and may be rather complicated, and so, in general, it has to be calculat':::d either nwnerically
or symbolically using a symbolic algebra package. In this work we use both c.pproaches. We use a
FORTRAN 77 program employing the Numerical Algorithms Group (NAG) routine F03ADF to
evaluate the determinant of P using LO factorization with partial pivoting. A me,dification of Powell's
[6] hybrid algorithm, which is a combination of Newton's method and the method of steepest descent,
implemented using NAG routine C05NBF is then used to find the eigenvalues of P by solving the two
non-linear equations obtained from the real and imaginary parts of the determinant ofP.

MARGINAL STABILITY CURVE

In this work we shall concentrate on the problem of the onset of steady Marangoni convection in a
horizontal fluid layer with non-deformable free surface, i.e. we set cy = 0, R= 0 and c,. = O. The
marginal stability CliniCS in the (a,M) plane on which CYr = 0 separate regions of unstable modes with O"r

> 0 fTom those of stable modes with O"r < O. The critical Marangoni number, denoted by Me, for the
onset of convection is the global minimum ofM over a> O. The corresponding critical wave number is
denoted by ae.
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