Handheld Devices 3D Video Streaming Compression Algorithm

RESEARCH MANAGEMENT INSTITUTE (RMI) UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

BY :

MOHAMAD TAIB MISKON HAMIDAH JANTAN WAN AHMAD KHUSAIRI WAN CHEK

MARCH 2016

ACKNOWLEDGEMENT

Special appreciation and thanks to those involved directly and indirectly in completing this research.

Specifically:

Prof. Madya Dr. Abdol Samad Bin Nawi (Rector of UiTM Terengganu Campus)

Prof. Madya Dr. Azemi Che Hamid (Deputy Rector (Academic Affairs))

Prof. Madya Dr. Mazidah Binti Puteh

(Deputy Rector (Research, Industrial Networking & Alumni))

and

All the peoples for their cooperation and support in making this research.

PROPOSED EXECUTIVE SUMMARY

The field of three-dimensional display (3D) has become one of the fascinating research areas as the race of offering an improved viewing experience among broadcasters has increased in recent years. In the entertainment perspective, 3D viewing experience helps to significantly enhance the quality of television programs [1]. Obviously, among the main benefits of 3D features on televisions or other services include the ability to provide greater sense of depth [2, 3], enhance the perfection of sharpness [4], sense of presence [3] and naturalness [4]. All these characteristics are also important especially in telemedical system in which real-time emergency video transmission and recording are sometimes required [5].

A 3D viewing is achievable through various methods. Authors in [6] summarize three major approaches with the simplest are two-view systems which at any instant reproduce just two views, one for the left eye and one for the right eye. Next, a more advanced approach is the horizontal-parallax displays which produce multiple horizontal parallax views of scene, also known as a parallax panaromagram. Besides, the most complete display type consists of those that utilize full-parallax features which offer variations in the images seen by the viewer with both horizontal and vertical head movements.

Just like any digital video, 3D video sequences must be compressed in order to make it suitable for consumer domain applications [7]. However, regular compression methods implemented in modern video coding model such as H.264, MPEG-4 and MPEG-2 are not proficient in constructing sufficient compression while preserving the 3D clues. Luckily, an enormous amount of redundancies can be found in an integral video sequence in terms of motion and disparity. In recent years, a Three Dimensional Discrete Cosine Transform (3D-DCT) coding algorithm has been developed for compression of still 3D integral images [8-10]. The main benefit of using transform coding is that integral 3D images are inherently divided into small non-overlapping

TABLE OF CONTENTS

REPORT SUBMISSION LETTER										
OFFER LETTER										
ACKNOWLEDGEMENT ENHANCED RESEARCH TITLE AND OBJECTIVES										
					TAI	TABLE OF CONTENTS				
LIST OF FIGURES LIST OF TABLES PROPOSED EXECUTIVE SUMMARY										
					ENHANCED EXECUTIVE SUMMARY					
CH	APTER	1: INTRODUCTION	1							
1.1	Resear	ch Background	1							
1.2	Proble	n Statement	3							
СН	APTER	2 : LITERATURE REVIEW	4							
2.1	Introdu	ction	4							
2.2	Mobile Computing		4							
	2.2.1	Mobile Device	4							
	2.2.2	Mobile Operating System	5							
	2.2.3	Mobile Connection	6							
2.3	Overview of Mobile Video Streaming									
	2.3.1	Video Architecture	8							
	2.3.2	Video Communications and Applications	8							
2.4	Video	Coding Standards	11							
2.5	Overview of Video Compression		13							
	2.5.1	Video Compression Process	14							
2.6	Motion Estimation									
	2.6.1	Matching Criteria for Block Matching Motion Estimation	18							

77	Blook N	Astching Algorithm	10
2.1	BIOCK Matching Algorithm		
2.8	Searchi	ng Methods for Motion Estimation	21
	2.8.1	The Exhaustive Search (ES) or Full Search Algorithm	21
	2.8.2	Three-Step Search (TSS)	22
	2.8.3	New Three-Step Search (NTSS)	23
	2.8.4	Simple and Efficient Search (SES)	24
	2.8.5	Four-Step Search (4SS)	25
	2.8.6	Diamond Search (DS)	27
	2.8.7	Adaptive Root Pattern Search (ARPS)	28
2.9	Motion	Compensation	29
2.10	3D Vide	20	29
2.11	Video Delivery Challenges		
2.12	Video S	treaming Network Protocol	33
CHA	APTER 3	B : METHODOLOGY	35
3.1	Researc	h Methodology Framework	35
3.2	Preliminary Study		
3.3	Experimental Design		
3.4	Algorithm Development		
3.5	Testing	& Evaluation	45
CHA	APTER 4	: RESULTS & DISCUSSIONS	47
4.1	Various	Compression Algorithm	47
4.2	Transmi	ission Process	49
4.3	Evaluat	ion of Video Performance	55
СНА	APTER f	5 : CONCLUSION AND RECOMMENDATION	59
51	Conclusion		
<i>v</i>			

REFERENCES

61