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Abstract—The Global Navigation Satellite Systems (GNSS) 

have been used in autonomous vehicles and remote sensing. The 
GNSS receiver can be a conventional device or an enhanced device 
that adopts precise positioning technology such as differential 
positioning and real time kinematics. However, the GNSS devices 
could still produced outputs that are subjected to various sources 
of errors.  Hence, their performance needs to be evaluated and 
analyzed. Subsequently, error mitigation techniques are proposed 
to enhance the GNSS performance. In this paper, we aim to 
present a conceptual framework on the analysis and modeling of 
GNSS measurements based on Gaussian Process (GP). Firstly, the 
methods of performance analysis of GNSS devices are presented. 
Secondly, current works on the applications of GP to model GNSS 
and position sensors’ errors are briefly reviewed. Subsequently, 
we present a conceptual framework to provide an overview to the 
readers the purpose of various performance evaluation methods. 
On the other hand, the conceptual framework on the current 
applications of GP to model and improve GNSS errors is presented 
to wrap up the concepts and methods of GP that has been 
implemented by researchers thus far. The established framework 
assists us to identify some research gaps and further works that 
can be explored in the applications of Gaussian process to model 
GNSS measurements and errors.     

 
Index Terms— Deep Gaussian process, Gaussian Process, 

Global navigation satellite systems 

I. INTRODUCTION 
UTONOMOUS vehicles navigation relies greatly on 
various sensors such as light detection and ranging 

(LIDAR), vision system, communication devices, vehicle 
odometry, global positioning system (GPS) and inertial 
measurement sensors in ascertaining the vehicle location 
accurately. To date, various localization technologies have been 
developed to ascertain the vehicle pose and location [1-3]. The 
ultimate purpose of these proposed methods is to achieve 
localization of vehicle current pose and location with high 
degree of accuracy. 

 

 
 

 

 
The GPS is one of the sensor employed to ascertain a vehicle 

or user position on earth. In a wider sense, the GPS is part of  
the Global Navigation Satellite Systems (GNSS) that includes 
Europe’s Galileo, the USA’s NAVSTAR, Global Positioning 
System (GPS), Russia’s Global’naya Navigatsionaya 
Sputnikovaya Sistema (GLONASS) and China’s Beidou 
satellite systems [4]. A conventional GNSS receiver (i.e. 
Receiver 1 and 2 respectively in Fig. 1) is used to determine the 
user position anywhere on earth. The position of a receiver is 
determined using a triangulation method based on 
measurements of pseudo-distances and coded signals from at 
least three known satellite positions. For more accurate 
positioning, the conventional receivers can receive signal 
combination from more than three satellites and mitigate errors 
using different strategies.   

 

 
Fig. 1. GNSS positioning system [4] 

 
The conventional GNSS positioning errors are normally 

caused by atmospheric, satellite clock errors and noise. An 
L1single frequency receiver could produced horizontal errors 
ranging from 5 to 20 meters [5]. To improve accuracy in 
conventional GNSS, differential GNSS (dGNSS) shown in Fig. 
2 can be utilized. It comprised of a receiver (base station) on a 
precisely known location. The base station compares the ranges 
from satellites in view and calculates range errors. The error 
corrections are sent to other receivers (rovers) through radio or 
other links. The corrected ranges are used by the rover to 
determine its position. The real time kinematics (RTK) GNSS 
also operates based on the same principle. The dGNSS uses 
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pseudo-range measurements whereas RTK uses carrier phase 
shift measurements.  

The RTK-GNSS can be categorized to both medium-high 
cost [7] and the low-cost RTK-GNSS [8] that could achieve 
centimetres positioning. However, performance evaluation on 
five different brands of low-cost (< $1000) RTK-GNSS (i.e. 
Swift Piksi Multi, NVS Technologies NV08C-RTK, Emlid 
Reach, u-blox NEO-M8P and Skytraq S2525F8-RTK) 
operating in rural, sub-urban and urban landscapes has been 
conducted in [8]. Each of the low-cost RTK-GNSS was tested 
under these landscapes using a Navcom and a Patch antenna 
respectively. The results reveal that under dynamic testing (i.e. 
when the rover is moving) in these landscapes; they cannot hold 
an RTK fixed-integer solution for any significant time in 
dynamic applications. For example, the accuracy results for 
sub-urban condition ranges between 0.4 m (Reach) to 3.5 m 
(NEO-M8P) when using the Navcom antenna. When using the 
Patch antenna, the highest accuracy is achieved by Reach at 
0.05 m whereas the Skytraq recorded accuracy at 5 m with the 
same antenna. 

 
Fig. 2. Differential/RTK GNSS positioning system [5] 

 
Many of the sensors employed in the localization systems 

may have errors i.e. single point data from GNSS and  drifts in 
inertial measurement systems. In assisting these localization 
systems; research on improving sensor measurements from 
GNSS and inertial navigation system (INS) has been an area of 
research focus. The improved sensor measurements will in turn 
improve the overall performance of a localization system when 
the measurements are fused with data from other sensors [9-11].     

In view of the inaccuracies in low-cost RTK-GNSS [8] and 
conventional GNSS [5]; there is a need to improve and optimize 
measurements from these devices. Hence, this paper aims to 
study analysis methods in GNSS measurements. Secondly, the 
authors aim to study related literatures specifically on modeling 
errors from position sensor measurements using Gaussian 
process (GP). At the end of the brief review, a conceptual 
framework for analyzing and modeling errors in GNSS based 
on previous works is presented and discussed. Finally, research 
gaps and future works for the analysis and modeling of GNSS 
errors based on GP is proposed in this paper. Section 2 of this 
paper outlines related works in the analysis of GNSS 
measurements. Section 3 reviewed previous works on modeling 

errors using GP. Section 4 outlines the findings and discuss the 
conceptual framework for the analysis and modeling of GNSS 
errors based on GP. This section also highlights the research 
gaps and provide directions for future research.   

II. PERFORMANCE ANALYSIS OF GNSS RECEIVER 
MEASUREMENTS 

The position of an object on earth surface could be obtained 
by a GNSS receiver that can collects data from all the satellite 
systems. However, the accuracy of positioning depends largely 
on  factors such as landscape, weather conditions, satellite 
position, and receiver quality. In recent years, various 
technologies such as Precise Point Positioning (PPP), Satellite-
based Augmentation System (SBAS) and real time kinematics 
(RTK) have been implemented to improve the accuracy of 
positioning in GNSS receivers.  

A. Performance Evaluation of GNSS Measurements      
The performance of these conventional and RTK-GNSS 

receivers could be evaluated in terms of accuracy, integrity, 
continuity and availability [12]. Accuracy is defined as the 
difference between the measured and actual position, speed or 
time. Integrity is the ability of the receiver to provide a 
threshold of confidence in its measurements. A receiver with 
good continuity is evaluated based on its ability to function 
without interruption. Finally, availability is the amount of time 
the measured signals are obtained with high accuracy, integrity 
and continuity. These are normally done with reference to some 
ground truth data.  

 Demoz Gebre-Egziabher [8] evaluated five different types 
of low-cost RTK-GNSS namely Piksi Multi, NVS 
Technologies NV08C-RTK, Emlid Reach, u-blox NEO-M8P 
and Skytraq S2525F8-RTK. The performances of these RTK-
GNSS were evaluated in terms of accuracy, continuity and 
availability using two types of antenna. The accuracy is defined 
as the accuracy of horizontal positioning in meters whereas 
continuity was assessed based on the the number of times an 
RTK fixed-integer solution was lost per RTK minute. 
Availability is the percent of time a receiver recorded an RTK 
fixed solution. These devices were subjected to both static and 
dynamic tests under rural, sub-urban and urban environments. 
Rural areas have a clear view of the sky with no obstructions or 
nearby metal structures. Urban areas have tall, metal structures 
and a narrower view of the sky from the antenna’s point-of-
view. Sub-urban areas fall somewhere in-between. The 
performance of low-cost RTK-GNSS was compared to SF-
3050 (high-end) and Eclipse P307 (mid-range) that have 
superior performance in terms of accuracy, continuity and 
availability. It was observed that the Emlid Reach has the best 
performance among the low-cost RTK-GNSS. 

Luo et al. [13] evaluated the performance of Leica Viva 
RTK-GNSS receivers based on availability, accuracy, 
coordinate quality (CQ) indicator and time to fix (TTF). The 
Leica Viva GS10 with AS10 antenna was used as base station 
whereas Leica GS15 was used as rover. Static test was 
conducted on the rover signals (operating at short baseline) 
placed under the canopy and open-sky situations. The received 
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signals were evaluated on the accuracy, availability, CQ 
indicator and TTF when the receiver operates using a GPS only, 
GLONASS only, Beidou only and combination of GPS, 
GLONASS and Beidou  (GGB). In general, the open-sky tests 
reported better performances in availability, accuracy, CQ 
indicator and TTF compared to canopy test. The receiver 
recorded the lowest performance in availability, accuracy, CQ 
indicator and TTF when operating using only Beidou signals 
compared to GPS only, GLONASS only and GGB. Overall, the 
best performances were observed in GGB signals where RTK 
fix accuracy is 0.015 and 0.005 m for canopy and open sky 
respectively. The RTK fix availability for GGB was 99.99% 
with the lowest mean TTF.  

Baybura et al. [14] evaluated the performance of long base 
RTK (LBRTK) and network RTK (NRTK) using the accuracy 
of positioning. The LBRTK comprised of a a base station that 
employed Ashtech Proflex 800 GNSS receiver and 
AERAT1675_120 SPKE geodetic antenna. Long base RTK 
could project corrections to six static stations that were located 
between 5 km to 60 km from the base station. These static 
stations employed the Stonex S9 GNSS. On the other hand, 
these six stations can also receive corrections from NRTK via 
the CORS-TR network. The authors compared the 
measurements’ accuracy which is determined in terms of 
standard deviation from the mean value for NRTK and LBRTK 
respectively. Deviations increased when the static station move 
away from the base in LBRTK. On the other hand, the NRTK 
has better performance in accuracy compared to the LBRTK. In 
addition, the work also evaluated the effects of dilution of 
precision and ionospheric errors. 

B. Performance Evaluation of GNSS Signal Qualities       
Another type of performance evaluation is conducted to 

evaluate GNSS signal qualities due to multipath and signal 
obstruction. This is due to GNSS broadcasted signals are 
subjected to multipath errors due to reflection and diffraction 
by metallic objects, lakes and other reflecting surfaces. Hence, 
the multipath causes reception of direct GNSS signal together 
with the reflected signals simultaneously. Multipath will result 
in errors in pseudo-range measurement and carrier phase. 
Another source of error in GNSS is the weak geometric 
configuration of satellites where the distribution of satellite in 
the view of the observer is obstructed by house/building wall 
and tree canopies. This will cause an increased in the dilution 
of precision (DOP).  

Chengyan et al. [15] studied the multipath performance and 
its impact on the positioning performance of received GNSS 
signal from Beidou satellite system (BDS). The signals received 
from BDS at a static GNSS receiver (with a 25 m high attenna) 
at an observatory station was analysed using mathematical 
verifying model to determine the pseudo-range multipath error; 
waveform and modulation error and the correlation 
characteristics. This study served as reference for BDS future 
signal design and system construction.  Rychlicki et al. [16] 
developed a software that can log and process GNSS signals 
from multiple GNSS receivers simultaneously. The software 
was used to process GNSS signals and evaluate positioning 
accuracy in terms of average numbers of visible satellites, 
dilution of precision (DOP), horizontal dilution of precision 

(HDOP) and vertical dilution of precision (VDOP). The GNSS 
signals was collected in 4 types of test scenarios i.e. i) Mode 1: 
Static (conventional) in an open area; ii) Mode 2: dynamic (real 
time kinematic—RTK) at minimum speed of 100 km/h on a 
dual carriage way; iii) Mode 3: dynamic (RTK at maximum 
speed of 50 km/h in a built up area and Mode 4: static in a built 
up area. All nine GNSS receivers evaluated in this work 
demonstrated different performances where some GNSS 
receivers were more superior than others due to the dual 
frequencies technology. In general, the average number of 
satellites were higher in mode 2, 3 and 4, which were located in 
built up area (some obstruction from building and structures). 
This is also due to partial obstruction of the satellite signals by 
the vehicle. All GNSS receivers demonstrated highest DOP, 
HDOP and VDOP in Mode 1 compare to other modes. Overall, 
all receivers recorded values lower than 2 threshold, for DOP, 
HDOP and VDOP which indicates correct positioning. 

Luo et al. [13] also evaluated RTK-GNSS signals based on 
mean geometric dilution of precision (GDOP) for the Leica 
GNSS operating using signals from GPS only, GLONASS 
only, Beidou only and combination of GPS, GLONASS and 
Beidou  (GGB). It was found that the Beidou only setup 
reported the worst GDOP. On the other hand, the GGB setup 
demonstrated the best GDOP compared to GPS, GLONASS 
and Beidou only. The work also analysed the signal-to-noise 
ratio for the reception of the GPS only, Beidou only and 
GLONASS only signals 

Guo et al. [17] evaluated raw GNSS signals from Xiaomi 8 
smartphone which operated in dual frequencies namely the 
L1/E1 single-frequency and L5/E5 frequency. The newly added 
L5/E5 signals with binary phase-shift keying (BPSK(10)) and 
alternative binary offset carrier (AltBOC(15,10)) modulation 
were found to be less prone to distortions from multipath 
reflections compared to L1/E1 [18,19].  Guo et al. [17] analysed 
characteristic of raw multi-GNSS observations from Xiaomi Mi 
8 under static open and dynamic complex environments 
(mixture of open area and built up area). The Xiaomi 8 received 
RTK corrections from a base station that employed Septentrio 
PolaRx5 receiver connected with a Trimble antenna. The raw 
GNSS measurements from the L1/E1 and L5/E5 frequencies 
respectively were evaluated in terms of carrier-to-noise ratio, 
noise of pseudo-range, carrier phase observations, the 
percentage of pseudo-range gross errors and carrier phase cycle 
slips. It was observed that when the carrier-to-noise ratio 
increases, the standard deviation (SD) of the pseudo-range 
residuals decreases. The L5/E5 measurements demonstrated 
lower SD pseudorange residuals below 5 m whereas L1/E1 
measurements could reach up to 15 m. The carrier phase noise 
was below 2 cm and the phase cycle slips increases in dynamic 
GNSS-degraded environments. 

GNSS signals had been studied and evaluated using 
mathematical simulations. He et al. [20] introduced statistical 
channel model that considers statistical distributions of various 
geometric path delays and multipath relative amplitudes. The 
model could compute multipath error envelopes which are valid 
for static test of GNSS under various multipath environments 
such as open, rural, suburban and urban scenarios where various 
signals in the modulation scheme such as BPSK, MBOC and 
BOC were analysed using the model. 
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TABLE I 
GNSS PERFORMANCE EVALUATION METHODS 

 
Authors Factors Considered   Parameters Analysed 

 
Testing scenarios Type of GNSS receivers 

Demoz Gebre-Egziabher 
[8] 
 

Landscape and receiver 
quality 

Horizontal accuracy, 
continuity and availability  

Static and dynamic tests in 
rural, sub-urban and urban 
scenarios. 
 

Piksi Multi, NVS 
Technologies NV08C-RTK, 
Emlid Reach, u-blox NEO-
M8P, Skytraq S2525F8-
RTK, SF-3050 (high-end) 
and Eclipse P307 (mid-
range) 
 

He et al. [20] Landscape and receiver 
quality 
 
 

Signals in the modulation 
scheme (e.g. BPSK, 
BOC, MBOC) are analysed 
using statistical channel 
model. 
 

Open, rural, sub-urban and 
urban scenarios 

Conventional GNSS receiver 

Rychlicki et al. [16]  Landscape, satellite 
positions and receiver 
quality   

Average numbers of visible 
satellites, dilution of 
precision (DOP), horizontal 
dilution of precision 
(HDOP), vertical dilution of 
precision (VDOP) were 
logged and processed from 
the 9 different types of L1 
GNSS receivers using a 
customized software. 
 

• Static (coventional) in an 
open area; 

• Dynamic (real time 
kinematic—RTK) at 
minimum speed of 100 
km/h on a dual carriage 
way; 

• Dynamic (RTK at 
maximum speed of 50 
km/h in a built up area; 

• Static in a built up area. 
 

9 different types of L1 
GNSS receivers. 

Guo et al. [17] Landscape and receiver 
quality 

Analysis of carrier-to-noise 
density ratio, noise of 
pseudo-range, and carrier 
phase observations and 
carrier phase cycle slips from 
raw GNSS data for L1/E1 
and L5/E5 measurements 
respectively. 
 

• Static (RTK) in an open 
area; 

• Dynamic RTK  test in 
open area 

• Dynamic RTK test in 
built up area 

 

• Xiaomi GNSS receiver 
with dual frequencies 
function at L1/E1 and 
L5/E5 

 

Chengyan et al. [15] Landscape, satellite position 
and receiver quality 

Pseudo-range multipath error 
analysis; waveform and 
modulation error analysis; 
correlation curve analysis on 
measurements of Beidou B1 
signals using mathematical 
models. 
 

• Static (conventional) in a 
built up area 

• Xin Jiang observatory 
using a 25 meter antenna 

Luo et al. [13] Landscape, satellite position 
and receiver quality 

Geometric dilution of 
precision (GDOP), signal-to-
noise ratio, position 
availability, accuracy, CQ 
reliability and time to fix of  
receivers using GPS only, 
GLONASS only, Beidou 
only and combination of 
GPS, GLONASS and Beidou 
signals. 
  

• Static (RTK) canopy test 
• Static (RTK) open-sky 

test 

• Leica GNSS with 
differential code 
positioning and RTK 
positioning respectively 

Baybura et al. [14] 
 
 

Satellite position and 
receiver quality 

The standard deviations of 
coordinate positions and 
position dilution of precision 
(PDOP) are analysed from 
data logged for all six static 
sites operating under 
network RTK (NRTK) and 
Long Base RTK (LBRTK) 
respectively.  
  

• Static (RTK) open-sky 
test 

• Long Base RTK using 
Ashtech Proflex 800 
GNSS receiver as base 
station and Stonex S9 at 
six static sites  

• Network RTK using 
CORS-TR network and 
Stonex S9 at six static 
sites 
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The performance evaluation methods of GNSS (conventional 

and RTK) were summarized in Table 1. This review is not 
exhaustive but is sufficient to illustrate performance analysis of 
GNSS receivers at the signals and device outputs respectively. 
Table 1 illustrated that, when performing performance 
evaluation; the factors and parameters affecting the GNSS 
measurements were defined, selected and evaluated. These 
measurements were normally collected under various testing 
scenarios; such as static and/or dynamic tests in rural, urban or 
sub-urban environments. The performance is also dependent on 
the receiver and antenna quality used, that can be categorized 
to high-cost, mid-range and low-cost receivers.   

III. APPLICATIONS OF GAUSSIAN PROCESS IN MODELING 
ERRORS IN GNSS SENSORS 

Gaussian process (GP) model correspond to a random 
function with joint multivariate Gaussian distribution. Cheng et 
al. [21] found that the GP model is suitable for data that has 
correlated outcome values, functional (time-varying) 
covariates, nonlinear and non-stationary effects, and model 
inference. GP is based on a Bayesian non-parametric model that 
naturally provide a prior for an unknown  regression function  
f(X) estimated from input data X and  observation y ϵ ℝ shown 
in (1). The y differs from f(X) by additive noise defined as 𝜀𝜀 =
𝒩𝒩(0,σn2), is the zero-mean Gaussian noise with variance σn.

2   
 

𝑦𝑦 =  𝑓𝑓(𝑋𝑋) + 𝜀𝜀                            (1) 
 

The 𝑓𝑓(𝑋𝑋) is uniquely specified by a mean function m(t) = 0 and 
a covariance function 𝑘𝑘(𝑥𝑥, 𝑥𝑥′) shown in (2). The GP specifies 
f(X) using X = (x1, x2, ..., xN) (where xi ϵ 𝕏𝕏) finite number of fixed 
inputs and corresponding observations y =  (y1, y2, ..., yN). 

  
𝑓𝑓(𝑋𝑋)~𝒢𝒢𝒢𝒢(0, 𝑘𝑘(𝑥𝑥,𝑥𝑥′))                      (2) 

 
GP could estimate priori distribution for the entire estimated 
non-linear function. The prior density function  f |X with zero 
mean is shown in (3) where K is an N x N covariance matrix 
defined by K = k(xi; xj). Equation (4) defined the output density 
function y|f(X).  
 

𝑓𝑓|𝑋𝑋~𝒩𝒩(0,𝐾𝐾)                                   (3) 
 

y|f(X) = 𝒩𝒩(𝑓𝑓(𝑋𝑋), σn2)                            (4) 
 
Recently GP model has been applied to model and improve 

errors in position sensors. In robot motion planning, odometry 
sensors were used to feed initial state measuremet in SLAM 
sensor. As the odometry may have errors, this may affect the 
accuracy of the initial state measurement fed into the SLAM. 
To solve this problem, Carrio et al. [22] trained a Gaussian 
process on odometry residuals to model poor traction 
performance. The methodology trains a GP on the residual 
between the non-linear parametric motion model and the 
ground truth training data. The results show that the GPR 
improved initial states from the odometry successfully resulting 
in enhanced visual Simultaneous Localization and Mapping 

(SLAM). In another similar work, GP was directly applied to 
RGBDSLAM to represent the measurement noise of the 
position data from the SLAM [23]. GP models the independent, 
identically distributed (i.i.d) Gaussian noise based on an 
exponential kernel with hyper parameters estimated with the 
ML-II method [24]. The GP was extended to a Kalman filtering 
method to improve localization performance of the 
RGBDSLAM.  

In the area of positioning using GPS, Ye et al. [25] used 
Noisy Input Gaussian Process Regression (NIGPR) and an 
enhance Kalman filter to correct position and orientation errors 
in airplane during GPS out stages. In another work, GP has been 
applied to model GPS errors from buses that were equipped 
with GPS sensors that collect vehicle trajectory data. The GPS 
sensors in buses may be subjected to errors due to 
environmental, distinct calibrations and time. Hence, this 
causes variances in the buses positions and time stamps even 
when they travel in the same trajectory.  Kortesalmi [26] solved 
the GNSS variance estimation problem along a bus trajectory 
by means of a mixture of GP trained using GNSS positions and 
time stamp data. The result is a grid where each point has a 
longitude and latitude mean and variance. In the same work, a 
mixture of Gaussian processes that were trained with time 
stamp and speed information of buses is also used to predict the 
arrival time for public transportation buses. The arrival time 
prediction is from one bus stop to the next, not for the whole 
trajectory. Similar works using GPs have been used with spatio-
temporal datasets to create local trajectory models [27-29]. In 
[27], GPs are used to recognise common activities from spatio-
temporal datasets. In [28], sparse GP regression is used to 
perform trajectory modelling. 

The majority of the noise in GPS signal is the signal delay 
caused by the ionosphere which can be described by the vertical 
Total Electron Content (vTEC) [30]. The vTEC contributes the 
majority of noise in the GPS signal received by ground stations. 
To eliminate this delay, a GP model is learned to predict the 
vTEC value for any given geographic coordinate [30]. Data was 
collected from 16 RTK-GNSS over a period of 10 days. 
Experiments were conducted using the first 5 days of data to 
train the GP model in an offline manner whereas the next 5 days 
data was used to test the model. An algorithm to detect outliers 
and split the received GPS signal was developed to separate the 
signals into clean and noisy subsets. The GP model is then 
trained on the clean dataset to minimize a loss function based 
on an exponential kernel function. The learned GP model was 
applied to the noisy data set to compute absolute residuals. 
Next, a Filter-Reweight-Retrain (FRR) function optimization 
algorithm was proposed to truncate the noise level in the noisy 
data set based on the absolute residuals predicted. It was able to 
filter large residuals from the noisy data. The remaining noisy 
data points are reweighted according to their residual error and 
finally the GP model is retrained on the reweighted noisy data 
points and the clean dataset together. A successfully optimized 
GP model was applied to a testing station to predict the vTEC 
and the double difference related to the testing station for 
successful positioning. The method exhibit a high ratio of 
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successful positioning compared to other existing optimizing 
algorithms. 

 
TABLE II 

SUMMARY OF SOME GP METHODS 
Authors Methods Results 
Carrio et al.[22] GP trained using 

odometry residuals 
with various kernel 
functions i.e. radial 
basis function (RBF), 
RBF+linear, matern 
5/2 and matern 
5/2+linear. 
   

The GP trained using 
RBF has the best 
performance in 
predicting odometry 
residuals with RMSE 
of 0.004494 and MAE 
of 0.002127 

Ye et al. [25] GP trained to model 
GPS errors and feed to 
a Kalman Filter (KF)  
to estimate all inertial 
navigation system 
(INS) errors in an 
aeroplane’s position 
and orientation 
system.  
 

Produce 90% better 
estimate compared to 
only using KF.  

Kortesalmi [26] 
 
 

Gaussian processes 
trained using GNSS 
positions and time 
stamp data to estimate 
position variance and 
bus arrival time along 
a bus route. 

The variance variation 
is larger at certain 
locations on the bus 
line i.e. sharp 
trajectory turn due to 
poor GP modelling.  
The root mean square 
error for predicted 
arrival time ranged 
from 5 to 19 seconds. 
 

Lin et al. [30] GP with exponential 
kernel function and 
FRR algorithm to 
predict vTEC and 
double difference 
matrix at static GNSS 
station  

The GP with FRR 
reported an average 
ratio of  RTK 
positioning at 78.4% 
which has the best 
performances 
compared to another 
four optimization 
algorithms that 
perform at 70% and 
below. 

Hines and Hetland 
[31] 

Predict slow slip 
events using GP 
trained using 
Wendland covariance 
function where 
covariance function 
parameters were 
constrained with 
maximum likelihood 
methods.  

Good fitting between 
observed and 
predicted data was 
found in two out of 
four ground stations. 
Misfit between 
observed and 
predicted data in two 
stations is likely due to 
oversmoothing. 

 
Transient strain from GNSS data can be used to study 

geophysical processes and seismic activities on earth surface. 
Hines and Hetland [31] proposed Gaussian Process Regression 
(GPR) to estimate transient strain from GNSS data. GPR  was 
used to detect transient strain resulting from slow slip events 
(SSE) in the Pacific Northwest. The GPR was described with 
addition of the temporally correlated Gaussian noise described 
using first order Gauss-Markov process (FOGM). Thus, 

maximum likelihood methods are used to determine the 
parameters that needs to be constrained in the covariance 
function. The temporal covariance of the model is described by 
a compact Wendland covariance function. This was reported to 
have significantly reduces the computational burden that can be 
associated with the GPR.  

Selected works mentioned above are summarized into Table 
2. The results demonstrated GP can be used to predict errors 
from  position and GNSS sensors. Some works [22, 25, 30] 
reported promising results whereas inferior performance were 
found in [26, 31] due to poor modeling and oversmoothing.   

IV. FINDINGS AND DISCUSSION 

A. Findings and Discussion on GNSS Performance Evaluation 
and Analysis      

The performance evaluation of GNSS measurements based 
on accuracy, availability, continuity and integrity  serve as 
general indicators on the overall quality of measurements 
produced by both conventional and RTK-GNSS. On the other 
hand, performance evaluation and analysis on the signal 
qualities of GNSS measurements such as carrier phase, pseudo-
range, modulation and dilution of precision aims to evaluate 
errors that may be contributed by various phenomena. 

The phenomenas that contribute to carrier phase and pseudo-
range errors are multipath propagation, atmospheric 
propagation errors (ionosphere and tropospheric errors), 
satellite and receiver clock biases and receiver noise [32]. The 
effects of these phenomena were usually studied and analyzed 
by subjecting the GNSS receiver to operate in open, rural, 
suburban and urban scenarios. The tests can be conducted in 
both static and/or dynamic modes. In an open sky scenario, the 
analysis aims to ascertain the errors contributed by the 
geometric distribution of satellites and atmospheric propagation 
errors. On the other hand, suburban and urban scenarios are 
used mostly to study the multipath propagation errors.        

Figure 3 illustrates the outcome of these two categories of 
performance evaluation. The outcome of the evaluation on 
signal characteristics and qualities leads to identification and 
quantifying of the error sources in both conventional and RTK-
GNSS. Subsequently, it guides the designing and development 
of algorithms, models and filters for signal processing at the 
device level.  On the other hand, performance evaluation of 
GNSS output measurements provides position error residuals 
that can be modeled mathematically for post-processing and 
improvement of direct measurements from these GNSS 
devices.         

In the aspect of signal processing, some researchers 
implemented development of models, algorithms and filters 
that processes the pseudo-range and carrier phase 
measurements of the GNSS signals that may be affected by 
various sources of errors. Guo et al. [17] developed a time 
differenced positioning filter to handle the receiver pseudo-
range noise in Xiaomi. The filter estimates the inter-epoch 
position variation (IEPV) with time differenced uncombined 
L1/E1 and L5/E5 carrier phase observations. Next, the state 
equation was constructed with IEPV to estimate the actual 
position of the receiver more accurately. The state equations are 
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formed with uncombined L1/E1 and L5/E5 pseudo-range 
observations and tested under open sky and GNSS-degraded 
environment. In Zhang et al. [33], time correlations of 
unmodelled errors are estimated from the residuals of code and 
phase observations of the double differenced method from 11 
different baselines. Next, exponent and quadratic models were 
proposed to fit the time correlations. Finally, the sequential 
adjustment method is used to compute baseline solutions taking 
into consideration time correlations. In a recent work, Hoffman 
et al. [32] mitigate undifferenced carrier phase errors using 
Gauss-Markov (GM) process. The authors also proposed a 
satellite position computation algorithm to improve errors due 
to the geometry distribution of satellites. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Performance evaluation framework of GNSS receivers 

  
GNSS position measurements could reveal error residuals 

when compared to ground truth data. These leads to the design 
of filter models to denoise random noise from measured 
outputs. For example, stationary GPS station position errors on 
seismic movements was modelled using an autoregressive 
moving average (ARMA) to de-noise the GPS time series data 
[34]. In another work, Tao and Bonnifait [35] modelled 
correlated biases in the L1-GPS using autoregressive model. 
The conventional L1-GPS errors was calculated based on 
comparison with ground truth and autocorrelation function 
reveals repeatable behaviour which could be modelled with 
AR(1) auto regressive filter.  

In addition, our brief review on some applications of GP in 
section 3 of this paper has shown the recent applications of GP 
to process the positioning error residuals [30, 31] from GNSS 
receivers. These GP models aim to model the measurement 
errors that may comprise of unmodelled corrrelated errors and 
random errors. In some works, GP was combined with KF to 
provide better estimates [23, 25].  

Overall, the framework in Fig. 3 can be used for both 
conventional GNSS and RTK-GNSS. However, it should be 
noted that in the case of RTK-GNSS, atmospheric propagation 
errors, and clock biases may be cancelled out due to the relative 
positioning corrections from the RTK base station [32]. Hence, 
this reduce the error mitigation to handle multipath errors and 
random noise only.     

B. Findings and Discussion on Gaussian Process modeling of 
GNSS measurement errors  

The GP model is useful to process positioning errors for 
GNSS. A typical approach is to use the GP model to perform 
‘coarse’ approximation of sensor measurements [22, 25, 26] 
using different kernel functions. Other researchers endeavour  
to obtain a GP with optimized hyperparameters that fits the data 
and noise well [24, 30, 31]. The latter can be illustrated by the 
conceptual framework shown in Fig. 4.  

Figure 4 shows that initial evaluation of conventional and 
RTK-GNSS is conducted. This evaluation is needed to evaluate 
positional drifts and the general performance of the GNSS due 
to multipath and non-multipath effects. Subsequently, training 
and testing data can be collected over a period of time using a 
conventional or RTK-GNSS rover station operating on static 
mode. Data-preprocessing may be needed to remove outliers so 
that data that exceed some threshold are removed.      

Figure 4 illustrates that model development can be described 
by (1) where y is the output; 𝑓𝑓(𝑋𝑋) is the GP prior model and 𝜀𝜀 
is the noise model. In modelling the accompanying noise 
model; the correlated and uncorrelated noise can be described 
as Gaussian noise. Next, training data is used to train the initial 
GP prior. The hyperparameters of the GP prior with noise 
model needs to be optimized to obtain a well fitted model. In 
the testing phase, test datasets  are used as inputs to the trained 
model. In the final step; outputs from the trained model are 
reevaluated to assess the model performance.    

Some general mathematical derivations will be used in this 
section to explain the framework illustrated in Fig. 4.  Based on 
(3) and (4), the posterior of the corresponding function f with 
given inputs and outputs {X, y} is obtained using Bayes rules as 
defined by (5).  

 

𝑝𝑝(𝑓𝑓|𝑋𝑋, 𝑦𝑦) = 𝑝𝑝�𝑦𝑦�𝑓𝑓�𝑝𝑝(𝑓𝑓|𝑋𝑋)
𝑝𝑝(𝑦𝑦|𝑋𝑋)

                            (5) 
 
where p(y|f) is the observation likelihood, p(f|X) denotes the 
prior distribution likelihood and the denominator is the 
marginal likelihood, 𝑝𝑝(𝑦𝑦|𝑋𝑋) =  ∫ p(𝑦𝑦|𝑓𝑓)p(𝑓𝑓|𝑋𝑋)df. Hence, the 
distribution of a particular function 𝑓𝑓∗ = f(𝑥𝑥∗) with novel input 
𝑥𝑥∗ can be obtained from (5) by averaging the outputs of all 
latent function values w.r.t. the posterior. This predictive 
distribution is shown in (6). 
 

p(𝑓𝑓∗|𝑋𝑋, 𝑥𝑥∗,𝑦𝑦) = ∫p(𝑓𝑓∗|𝑓𝑓,𝑋𝑋, 𝑥𝑥∗) p(𝑓𝑓|𝑋𝑋,𝑦𝑦)df          (6) 
 

Finally, the predicted distribution of the predicted output 𝑦𝑦∗ is 
obtained by marginalizing over 𝑓𝑓∗ as shown in (7). 
 

p(𝑦𝑦∗|𝑋𝑋, 𝑥𝑥∗,𝑦𝑦) = ∫ p(𝑦𝑦∗|𝑓𝑓∗) p(𝑓𝑓∗|𝑋𝑋, 𝑥𝑥∗,𝑦𝑦)df            (7) 
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Fig. 4. Conceptual framework of GP modeling of errors in GNSS measurements 
 
Equations (6) and (7) can be computed in closed-form as the 
observation likelihood and the posterior are both Gaussian [36]. 
Subsequently, the hyperparameters α of the kernel function K 
and the observation noise σn.

2  could be estimated by maximizing 
the marginal log-likelihood shown in (8).  

 
{𝛼𝛼� ,𝜎𝜎�𝑛𝑛2} =   log𝑝𝑝(𝑦𝑦|𝑋𝑋)𝛼𝛼,𝜎𝜎𝑛𝑛2

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎                   (8) 
 

The noise 𝜀𝜀 could be described as i.i.d Gaussian distribution 
with zero mean and variance 𝜎𝜎𝑛𝑛  in (9).  

 
𝜀𝜀~𝒩𝒩(0,𝜎𝜎𝑛𝑛)                                   (9) 

  
Equation (9) assumed white noise with variance 𝜎𝜎𝑛𝑛 .  

However, the GNSS is not only disturbed by white noise. 
Extensive research on noise affecting the GNSS measurements can 
be categorized to flicker noise which can be described by Brownian 
motion [37-40], band-pass process [41] and first order Gauss-
Markov process [31, 41, 42].  For example, our review on  Hines 
and Hetland [31] adopted FOGM as the noise model. The 
FOGM is included in estimating the GP prior. As the FOGM is 
Gaussian, the predicted distribution could be computed in 
closed-form and is tractable. The hyperparameters of the 
covariance function were subsequently estimated using 
maximum likelihood method to reveal an optimized model. In 
[30], the authors also assumed the noise is Gaussian and utilized 
a reweighted least square method to optimize the GP model 
hyperparameters. 

It is demonstrated here that by fitting a Gaussian noise model, 
will render the (6) and (7) to be computed in closed-form. To 
the best of our knowledge, the GNSS noise has only been 
approached using Gaussian models [30, 31]. He at al. [40] show 
that flicker noise consititute almost 90% of the noise in 
conventional GPS receivers. However, modeling flicker noise 
requires a reference time at which the process begin and may 
be infeasible to be incorporated in GP [31]. In another work, 
Langbein [38] investigated noise in GPS displacement 
measurement in two GPS networks in the United States and 
discovered that the noise in GPS measurement is a combination 
of various noise sources such as flicker noise, random-walk 
noise, power law noise and first order Gauss-Markov noise. 
Due to the complexity of identifying the best noise model; 
fitting the best noise model in a GP is a tedious process and 
computationally expensive.                  

 

C. Research gaps and Recommendations for Future Research 
based on Gaussian Process  

The previous sections presented the conceptual framework 
on dealing with GNSS measurements based on Gaussian 
process. Most works assumed Gaussian noise models and 
attempted to solve a closed form of the GP to reach an 
optimized model that could fit the data well. To our knowledge, 
the noise model has not been studied by assuming a non-
Gaussian distribution. Secondly, applications of other GP 
methods in modelling GNSS errors have not been explored and 
extensively evaluated. Hence, this leads us to the following 
research questions: 

 
a) Does the GNSS residuals fit a non-Gaussian 

distribution? 
b) If the answer to question (a) is yes; is the GNSS 

measurements best modelled using generalized 
Gaussian process models (GGPM)? 

c) Can Deep Gaussian process (DGP) provides a better 
solution that fits the data well?    

i) Generalized Gaussian Process Models (GGPM)  
The research questions posed in (a) and (b) brings us to 

revisit one area of GP namely generalized Gaussian process 
models (GGPM). The GGPM can be described as a Bayesian 
approach to Generalized Linear Models (GLM) [43]. The 
GGPM follows the formulation of GLM which can be specified 
as follows [44]: 

         
𝜂𝜂(𝑥𝑥)~𝒢𝒢𝒢𝒢(0, 𝑘𝑘(𝑥𝑥, 𝑥𝑥′)), 

𝑦𝑦~𝑝𝑝(𝑦𝑦|𝜃𝜃,𝜙𝜙), and  𝑔𝑔(Ε[𝑇𝑇(𝑦𝑦)|𝜃𝜃]) =  𝜂𝜂(𝑥𝑥)           (10) 
 

where 𝜂𝜂(𝑥𝑥) is the latent function modelled with a GP prior 
using x as the function inputs and y as observed outputs;  
𝑝𝑝(𝑦𝑦|𝜃𝜃,𝜙𝜙) is a component that models the output with 
exponential family distribution with parameter 𝜃𝜃 and dispersion 
𝜙𝜙 and 𝑔𝑔(Ε[𝑇𝑇(𝑦𝑦)|𝜃𝜃]) =  𝜂𝜂(𝑥𝑥) is the link function that relates the 
mean of the sufficient statistics 𝑇𝑇(𝑦𝑦)with the latent function. 
This allow direct specifications of the relationship between the 
output mean and the latent function 𝜂𝜂(𝑥𝑥). This directly relates 
the latent function with various non-Gaussian models such as 
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Gamma, inverse Gaussian, Poisson, Laplace, Binomial, etc. 
Hence, the observation likelihood 𝑝𝑝(𝑦𝑦|𝜃𝜃,𝜙𝜙) is no longer 
Gaussian. As a result, the posterior and predictive distribution 
(as denoted in (6) and (7)) is no longer tractable and could not 
be computed in closed form. To solve this, several approximate 
inference algorithms, such as Markov-chain Monte Carlo 
(MCMC) [45], variational bounds [46], Laplace approximation 
[47], and expectation propagation (EP)[48, 36] have been 
developed. 
 Recent researches had specified noise in GNSS receivers as 
non-Gaussian [49, 50]. Hence, revisitation of GGPM with 
approximate inference algorithms may be a promising 
modelling solution for GNSS measurement errors with non-
Gaussian distribution.     

ii) Deep Gaussian Process (DGP)  
The DGP was introduced  by Damianou and Lawrence [51]. 

DGP is the distribution over functions constructed by multi 
layer of GPs. Each function is assumed to be drawn 
independently from GP priors [52]: 

 
f(1:L)(x) = f(L)(f(L-1)(…..f(2)(f(1)(x))….. )  

 
where 𝑓𝑓𝑑𝑑

(𝑙𝑙)~𝒢𝒢𝒢𝒢(0, 𝑘𝑘d
(𝑙𝑙)(𝑥𝑥,𝑥𝑥’))  for 𝑓𝑓𝑑𝑑

(𝑙𝑙) ∈ 𝑓𝑓(𝑙𝑙)       (11) 
 

Equation (11) is a DGP with one-dimensional input x. The 
number of layers is denoted by L. In each layer, each GP is 
allowed to have different hyperparameters. Hence, different 
covariance matrix corresponds to different kernels. Due to 
exponential scaling of the terms, the DGP is analytically 
intractable and may need approximation inference methods 
[53]. 
 The DGP can overcome the limitations of the single-layer GP 
while retaining its advantages. In addition, DGP provides good 
uncertainty estimates, powerful non-linear mapping ability and 
great generalization capability [54]. The authors in [54] further 
enhanced the DGP for multi-view representation learning. 
Recently, Ye at al. [55] applied DGP for performance 
improvement of position and orientation data during GPS 
oustages. However, to the best of our knowledge, the DGP has 
not been employed for the modelling of GNSS measurements. 
Hence, the DGP can possibly address research question (c). 
This may be an area that can be explored in future works. 

V. CONCLUSION 
To this end, this paper has reviewed related works on 

performance evaluation and analysis of both conventional and 
RTK-GNSS. Recent and previous works on Gaussian process 
models on estimating and improving positioning errors were 
summarized and critically appraised. This leads to a unifying 
conceptual overview to show the readers various methods to 
approach performance evaluation and GP models established 
thus far by others. Consequently, a few research gaps were 
identified. Based on these research gaps, the authors propose 
future works to explore modeling and improvement errors in 
GNSS measurements using GGPM (that assumes non-Gaussian 
errors) and the DGP that could provide good uncertainty 
estimates and powerful non-linear mapping ability.     
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