UNIVERSITI TEKNOLOGI MARA

IN-SITU X-RAY DIFFRACTION STUDIES FOR THE LaSrFeO₃-Ba(Ce,Zr)O₃ CATHODE COMPOSITE

MUHAMMAD ADLAN FARIS BIN NOR AZIZAN

Thesis submitted in partial fulfilment of the requirements for the degree of **Bachelor of Science (Hons.) Physics**

Faculty of Applied Science

July 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as reference work. This thesis has not been submitted to any other academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Muhammad Adlan Faris Bin Nor Azizan
Student ID No	:	2017299536
Programme	:	AS203-Bachelor in Science (Hons.) Physics
Faculty	:	Applied Science
Thesis Title	:	In-Situ Diffraction Studies For The LaSrFeO3-
	Ba(C	e,Zr)O ₃ Cathode Composite

Signature of Student	:	
Date	:	July 2020

ABSTRACT

Owing to its high-power performance, solid oxide fuel cell (SOFC) is highly efficient in energy production. However, its high operation temperatures ranging from 800°C to 1000°C increase the cost which prevents its applications from expanding. Proton conducting fuel cell (PCFC) was developed, as it can work at intermediate temperature ranging from 400°C to 800°C. Due to reduced activation energy and comparatively elevated proton conductivity at intermediate temperature, PCFC can boost durability and performance. In this study, La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O₃₋₆-BaCe_{0.54}Zr_{0.36}Y_{0.1}O₃₋₆ (LSCF-BCZY) was used as composite cathode. By using the Rietveld refinement method, the structure parameters of LSCF-BCZY were determined at different temperatures from room temperature to 700°C, resulting in fulfilment of the phase refinement requirement. The goodness of fit fill the necessity below four. The materials' XRD shows orthorhombic crystal symmetry for LSCF and cubic crystal symmetry for BCZY with space group *Pbnm* (the name indicates a primitive lattice with b-glide plane perpendicular to the x-axis, n-glide plane perpendicular to the y-axis and mirror plane perpendicular to the z-axis) and *Pm-3m* (the name refers a primitive lattice with mirror plane perpendicular to x-axis, y-axis and z-axis, them threefold symmetry of body diagonals), respectively. Other structural studies have been using the Rietveld refinement process, such as space group, lattice parameters and crystal structure. All the properties studied here suggest it may be a promising candidate of cathode at intermediate temperature for PCFC.

TABLE OF CONTENTS

	Page		
CONFIRMATION BY PANEL OF EXAMINERS	i		
AUTHOR'S DECLARATION	ii		
ABSTRACT	iii		
ACKNOWLEDGEMENT	iv		
TABLE OF CONTENTS	V		
LIST OF TABLES	vii		
LIST OF FIGURES	viii		
LIST OF SYMBOLS	ix		
LIST OF ABBREVIATIONS	X		
LIST OF NOMECLATURES	xi		
CHAPTER ONE: INTRODUCTION	1		
1.1 Background Study	1		
1.2 Problem Statement	3		
1.3 Objective of Study	4		
1.4 Scope and Limitations			
1.5 Significant of Study			
CHAPTER TWO: LITERATURE REVIEW	6		
2.1 Introduction	6		
2.2 Fuel Cell	6		
2.3 Proton Conducting Fuel Cell (PCFC)	7		
2.4 Electrolyte	9		
2.4.1 Barium Cerium Zirconium Yttrium (BCZY)	10		
2.5 Cathode Composites			
2.5.1 Composite Cathode of LSCF-BCZY	13		
2.6 Lattice	13		
2.6.1 Space Group	16		

2.7 Cathode Composite Perovskite Structures		
2.7.1	Ceramics Perovskite Types Oxide	20
CHAPTER 3	3: RESEARCH METHODOLOGY	21
3.1 Powder H	Preparation	21
3.1.1	Synthesis of BCZY Ceramics	21
3.1.2	Synthesis of NiO-BCZY Anode Composite	23
3.1.3	Synthesis of LSCF Cathode Composite	25
3.2 Fabricati	on of Anode Pellet	27
3.3 Materials	s Characterization	27
3.3.1	In-Situ X-ray Diffraction (In-Situ XRD)	27
3.3.2	Phase Analysis	27
3.3.3	Lattice Parameter	28
3.3.4	Rietveld Refinement	28
3.3.5	Crystal Structure	29
CHAPTER 4	4: RESULTS AND DICUSSIONS	30
4.1 X-ray Di	ffraction (XRD) Analysis	30
4.1.1	Phase Analysis of LSCF-BCZY Cathode Composite	30
4.2 Lattice P	arameter of LSCF-BCZY Cathode Composite	32
4.3 Rietveld Refinement Analysis of LSCF-BCZY Cathode Composite		
4.4 Crystallo	graphic Data of LSCF-BCZY	36
CHAPTER I	FIVE: CONCLUSION AND RECOMMENDATIONS	39
REFERENC	CES	40
APPENDIC	ES	45
AUTHOR'S	PROFILE	46