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Abstract 

In geometric function theory, there are many types of class of analytic
function that had already been introduced by many researchers. For
every class of analytic function that have been defined and introduced,
it has its own properties to be considered. However, the properties ob­
tained are based on the suitability of the class of analytic functions.
To determine the related properties of each class of analytic functions,
extreme function must first be determined. Primarily, let Qr;(>.,µ, t) de­
note the class of analytic bi-univalent function subordinate to Chebyshev
polynomials in an open unit disk U = { z E C : I zf < 1} and satisfy

(1 - >.) f(z)
+ >.j'(z) + µzf"(z) -< H(t, z) , z E U

(1 - >.)g(w) 
+ >.g'(w) + µwg"(w) -< H(t, w), w E Dra 

w 

where z, w EU for some>. E [O, 1], µ E [O, 1] and t E (�, 1). Moreover,

class of analytic function will significantly provide new contributions to
geometric function theory. This project focus on attaining the coefficient
bound, fa2 f, fa3 f, fa4 f and the upper bound of the second Hankel deter­
minant, H2 (2) as the properties of the stated class of analytic function
Qr;(>.,µ, t) by using Toeplitz determinant. Furthermore, to obtain the
upper bound of the second Hankel determinant, the coefficient bound of
the class of function Qr;(>.,µ, t) must be determined first. Apart from
that, individual can improve existing proving skills learned from time to
time. Meanwhile, by substituting certain values in the variables of the
class of function, the class can be reduced to another class of function in
which had been developed by other researchers.
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