TECHNICAL REPORT

FEKETE-SZEGÖ INEQUALITIES FOR CERTAIN SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS ASSOCIATED WITH CHEBYSHEV POLYNOMIALS

Report submitted in partial fulfillment of the requirement for the degree of Bachelor of Science (Hons.) Mathematics Faculty of Computer and Mathematical Sciences

Acknowledgements

First of all, we are grateful to The Almighty God, Allah S.W.T. for giving us a good health and well being as well as times that were primary things necessary in order to complete our research.

Our sincerest thanks also to Dr. Mat Salim bin Selamat, Head of the Faculty of Computer and Mathematical Sciences, for his endess encouragement and support.

We also wish to express thousands of thanks to Pn. Norlyda binti Mohamed, Lecturer of University Technology Mara for acting as our supervisor. She has been extremely patient in guiding us as well as providing us with all the necessary information to complete the research. Indeed, we are truly grateful to her for sharing knowledge and her time that she spends for us. Only God can repay her kindness.

Special thanks also to our parents for their infinite encouragement, support and attention. They have been very supportive whenever we need their support.

We also take this opportunity to express our appreciation to all of the faculty's members who have helped us tremendously throughout this research.

Lastly, we would like to place our thanks, a sense of gratitude to those who directly or indirectly have lent their hand in making this research a success.

Abstract

Geometric function theory involves in studying the properties of analytic and bi-univalent functions. In the area of geometric function theory, a new subclass of function is constantly introduced and it is in nature for researchers to find its properties. Through Chebyshev polynomial, a new class of function is defined and two of its properties are to be studied. In this project, we introduced a new subclass of analytic and bi-univalent functions $g(z)$ assosiated with Chebyshev polynomials, $\xi_{\Sigma}(\lambda, \mu, t)$ defined by,

$$
(1-\lambda) g^{\prime}(z)+\lambda\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)+\mu z g^{\prime \prime}(z) \prec F(z, t):=\frac{1}{1-2 t z+z^{2}}
$$

and
$(1-\lambda) h^{\prime}(w)+\lambda\left(1+\frac{w h^{\prime \prime}(w)}{h^{\prime}(w)}\right)+\mu w h^{\prime \prime}(w) \prec F(w, t):=\frac{1}{1-2 t w+w^{2}}$.
where $\lambda \geq 0, \mu \geq 0$ and $t \in\left(\frac{1}{2}, 1\right)$.
With the class $\xi_{\Sigma}(\lambda, \mu, t)$, some of the properties is obtained which are coefficient bounds and the sharp bounds of Fekete-Szegö functional, $\xi_{\Sigma}(\lambda, \mu, t)$. Triangle inequality and maximization of function are applied in the process of finding the sharp bound of Fekete-Szegö functional. This project will be a significant endeavor in contributing new results for coefficient bounds and sharp bounds of Fekete-Szegö functional in the field of geometric function theory. Furthur studies can be done in finding the bounds for second Hankel determinant, third Hankel determinant or other properties for the class $\xi_{\Sigma}(\lambda, \mu, t)$.

Contents

1 Introduction 1
1.1 Problem Statement 6
1.2 Objectives 6
1.3 Scope of The Project 6
1.4 Significant of Study 6
1.5 Definition of Terms and Abbreviations 7
2 Literature Review 8
2.1 Development of Class of Function 8
2.1.1 Subordination to Chebyshev Polynomials 8
2.1.2 Hadamard Product or Convolution 10
2.1.3 Carlson-Shaffer Operator 11
2.2 Hankel Determinant 12
2.2.1 Mathematical Approach and Analysis 12
2.2.2 Fekete-Szegö Functional 14
2.2.3 Second Hankel Determinant 16
2.2.4 Third Hankel Determinant 17
2.2.5 Summary 19
3 Methodology 20
4 Results and Discussion 22
4.1 Preliminaries 22
4.2 Coefficient Bounds for Class of Function $\xi_{\Sigma}(\lambda, \mu, t)$ 25
4.3 Fekete-Szegö Functional for Class of Function $\xi_{\Sigma 2}(\lambda, \mu, t)$ 29
4.4 Verification of the Results 32
4.4.1 Coefficient Bounds for Class of Function $\xi_{\Sigma}(\lambda, \mu, t)$ 32
4.4.2 Fekete-Szegö for Class of Function $\xi_{\Sigma}(\lambda, \mu, t)$ 32
4.5 Discussion of the Results 33
4.5.1 Coefficient Bounds for Class of Function $\xi_{\Sigma}(\lambda, \mu, t)$ 33
4.5.2 Fekete-Szegö for Class of Function $\xi_{\Sigma}(\lambda, \mu, t)$ 34
5 Conclusion 36
Bibliography 37
A Email for verification 40
B Calculation Using MAPLE 42

