UNIVERSITI TEKNOLOGI MARA

PREDICTION OF NEW CONFIRMED CASES OF COVID-19 IN MALAYSIA USING UNIVARIATE TIME SERIES MODELS

SITI NOR IDAYU BINTI RAMLI

Report submitted in fulfillment of requirements for Bachelor of Science (Hons.) Management Mathematics Faculty of Computer and Mathematical Science

JANUARY 2021

STUDENT'S DECLARATION

I certify that this report and the research to which it refers are the product of my own work and that any ideas or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

.

SITI NOR IDAYU BINTI RAMLI 2019542515

JANUARY 27, 2021

ABSTRACT

In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to other countries including Malaysia. COVID-19 epidemic in Malaysia started as a small wave of 22 cases in January 2020 through imported cases. The number of confirmed cases of COVID-19 is increasing daily and reached to 673 cases on March 17, 2020. A limited lock-down approach called Movement Control Order (MCO) was immediately initiated to the whole country as a way to suppress the epidemic trajectory. Therefore, this study is conducted to predict the new confirmed cases of COVID-19 in Malaysia using univariate time series models. The models used are Mean model, Naïve model, Autoregressive Integrated Moving Average (ARIMA) model, and Exponential State Space models. The data used for this study is collected from January 25 to November 23, 2020 from the Ministry of Health Malaysia's website. Five different sets of data partitioning will be used to ensure the accuracy of the forecast values generated. R-programming was used to analyze the data for this study. The results indicates that Naïve model with partitioning set of 95 percent (Estimation Part) and 5 percent (Evaluation Part) shown a better performance in terms of Mean Error (ME), Root Mean Squared Error (RMSE), and Mean Percentage Error (MPE). However, its performance will decline whenever there is a random outburst in the data.

Keywords: COVID-19, epidemic, Movement Control Order (MCO), Mean, Naïve, ARIMA, Exponential State Space, R-programming.

TABLE OF CONTENTS

CONTENTS

PAGE

SUPERVISOR'S APPROVAL	ii
DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
LIST OF TABLES	ix
LIST OF ABBREVIATIONS	Х

CHAPTER ONE: INTRODUCTION

1.1	Background of the Study	1
1.2	Problem Statement	3
1.3	Objective of the Study	4
1.4	Scope of the Study	4
1.5	Significance of the Study	4

CHAPTER TWO: LITERATURE REVIEW

 2.2 Forecasting Analysis using COVID-19 Studies 2.3 Exponential State Space Models in Medical 2.4 Autoregressive Integrated Moving Average in Medical 2.5 Summary 	2	2019 Novel Coronavirus (COVID-19)	6
 2.3 Exponential State Space Models in Medical 2.4 Autoregressive Integrated Moving Average in Medical 2.5 Summary 	I	Forecasting Analysis using COVID-19 Studies	7
2.4 Autoregressive Integrated Moving Average in Medical2.5 Summary	I	Exponential State Space Models in Medical	9
2.5 Summary	I	Autoregressive Integrated Moving Average in Medical	11
-	S	Summary	12

CHAPTER THREE: RESEARCH METHODOLOGY

3.1	Method of Data Collection		13
3.2	Method of Data Analysis		13
3.3	Univa	riate Time Series Modeling	15
	3.3.1	Mean Model	16
	3.3.2	Naïve Model	16
	3.3.3	Autoregressive Integrated Moving Average Model	17
	3.3.4	Exponential State Space Models	17
3.4	Model Selection Criteria		19
3.5	Statistical Software		21

CHAPTER FOUR: RESULTS AND DISCUSSIONS

4.1	Introduction		23
4.2 Resu		sults	
	4.2.1	Data Cleaning	23
	4.2.2	Descriptive Analysis	25
	4.2.3	Apply Univariate Time Series Modeling	30
	4.2.4	Evaluation Procedures	34
	4.2.5	Forecast Future Values	36
4.3	Discu	ssions	38

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	39
5.2	Recommendations	40

41

REFERENCES

APPENDICES

Appendix A	Packages of R	47
Appendix B	Dataset	48
Appendix C	Results for Naïve, ARIMA and ETS Models	52