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ABSTRACT 

Blood Supply Chain (BSC) concerns with flow of blood products from blood collection by 
donors to transfusion of blood components to patients. BSC comprises of collection, testing, 
processing, storage, distribution and transfusion activities, which are normally responsibility 
of Blood Centre and hospitals. In Malaysia, National Blood Centre (PDN) is responsible to 
organize blood donation, collection and processing. Current procedure practised by PDN is to 
have vehicles sending staffs and equipment while one vehicle is assigned to collect donated 
blood from donation sites and transport the blood to PDN within six hours. As consequence, 
vehicles shortages are encountered and resources optimization unachieved especially when 
many blood donation sites involved per day. This paper presents the results of a preliminary 
study which aims at proposing blood collection optimal routes for blood collecting vehicles 
that adhere to all pre-determined time windows for blood collection at blood donation sites. A 
Mixed Integer Goal Programming (MIGP) model based on Vehicle Routing Problem with Time 
Windows (VRPTW) has been formulated. The MIGP model pursues four goals, namely, to 
minimize total distance travelled, to minimize total travel time, to minimize total waiting time 
of vehicles and to minimize number of vehicles (routes). The model was solved using preemptive 
goal programming approach and existing heuristics for the VRPTW. Based on the results, it 
can be concluded that the donated blood can be collected and transported using reduced 
number of vehicles as proposed by the MIGP model’s optimal compared to the total number of 
vehicles used by current practice, Thus, the proposed VRPTW based MIGP model has 
promising significant impact for donated blood transportation in terms of resources 
optimization and costs savings. The model and approach could be easily extended to solve 
larger problem involving large number of donation sites with variants of time windows for the 
sites. 

Keywords: Donated blood, transportation, Mixed Integer Goal Programming (MIGP) model, 
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1. Introduction  

Blood supply chain (BSC) problem is one of the crucial activities in the healthcare systems, 
where it can be categorized as a logistics as well as transportation problem, in ensuring 
sufficiency of blood supply. BSC is concerned with the flow of blood products from blood 
collection by donors to transfusion of blood components to patients (Ramirez et al., 2018). BSC 
comprises of collection, testing, processing, storage, distribution and transfusion activities, 
which are normally the responsibility of Blood Centre and hospitals, in which blood is a scarce 
resource supplied by humans. Collection of blood donated by donors is the first echelon in the 
BSC network whereas the transfusion of blood components to patients signifies its final 
echelon. Blood transfusion is an essential component of healthcare to save lives of people 
involved in accidents, in need for urgent treatment or undergoing trauma care, surgeries or 
transplants, and for those suffering inherited blood disorder. For these reasons, the management 
of BSC has gained attention of many researchers worldwide. 

Hospitals nationwide require about 2,000 units (450ml per unit) of blood per day 
whereas, in Klang Valley, demand of blood by hospitals is 500 units daily (Malay Mail, 2018). 
In Malaysia, National Blood Centre (in Malay, Pusat Darah Negara or PDN) is responsible to 
organize blood donation, collection and processing the donated blood. Any insufficient 
inventory in blood bank is mainly due to continuing shortfall of donations which could lead to 
fatalities if hospitals cannot provide blood transfusions needed. In addition, blood is also 
perishable in nature and has shelf life. Donated blood, when stored in refrigerator at required 
temperature, is only good for 42 days while platelets stored in required conditions have shelf 
life of five days and frozen plasma can only last for a year. Therefore, continuous replenishment 
of blood in blood bank must be carried out. Effective and efficient management of blood bank 
inventory is vital in ensuring the quality of blood and blood products and avoiding blood 
wastage due to deterioration. 

Blood supply is generally obtained through voluntary donations or blood donor programs 
where donors either donate whole blood or its components (red blood cells, plasma, and blood 
platelets) in which each component has different shelf life and used according to different 
requirements concerning the patients. Fifteen minutes is required for whole blood donation 
process per person, a minimum of 45 minutes is taken for Apheresis donation process for 
plasmapheresis of a person and up to three hours for plateletpheresis per person (Charbonneau 
et al., 2018). Donated blood is stored in blood packs that are kept in specially designed blood 
transport boxes. For maximum benefit, blood must be maintained at required temperature 
during transportation and storage to avoid spoilage or wastage, or reduced useful life. The 
system concerning storage and transport of blood and blood products that follows certain 
standard operating procedures (SOP) from the point blood is collected from donors to the point 
of transfusion and finally to patients is referred to as the blood cold chain. 

Blood cold chain in BSC dictates that collected whole blood or its components must be 
shipped to the blood centre (PDN or identified hospitals) or to blood transfusion service in right 
temperature and in accordance to SOP of temperature, security and hygiene. Elapsed time 
between pre-processed blood collection to centrifugation for component preparation at blood 
centre should not be more than six hours whereas fresh frozen plasma (FFP) requires separation 
from the whole blood within six to eight hours of collection (WHO, 2019). Efficient blood cold 
chain is crucial to ensure blood quality while failure to adhere to the specified storage 
conditions, temperature or duration can affect viability of blood constituents and result in 
reduced clinical benefits with potentially harmful effect to recipients of blood or its products. 
Meanwhile, pickup/delivery efficiency of blood from donation sites to blood centre is 
influenced by time windows for collection and choices of routes. 

In Malaysia, re-blood cold chain activities are managed by PDN.  However, the blood 
donation programs are organized separately by certain organizers either at specified hospitals 
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or other venues. Besides vehicles used for transporting staffs and equipment, a vehicle is 
allocated for transporting collected blood from a donation site to PDN or other blood centre 
twice per day. The two collections or deliveries from donation sites to blood centre include one 
which is done half way through donation period and another one after donation program at site 
is completed.  For remaining time, collection vehicles are idle and thus, not optimizing usage 
of vehicles and staffs and may cause shortages especially when many blood donation programs 
are held within same day. This motivates this study that is to determine more effective blood 
transportation (routing and scheduling), which is a critical component in the blood cold chain. 

Currently, research in blood transportation problem (BTP) in Malaysia is lacking.  
Hence, this study aims at establishing a model and method that reduces number of vehicles 
used, i.e., from a blood collection vehicle per site to lesser number of vehicles for all donation 
sites altogether.  Through this, optimization in terms of maximum quantity of blood carried per 
vehicle and minimum number of vehicles used can be achieved. Prior to solving BTP for larger 
scale problem where more efficient algorithms will be employed, a preliminary study was 
conducted to get insights of problem. This study involved several blood donations sites and 
PDN (depot) and used the VRPTW approach to solve the BTP. A Mixed Integer Goal 
Programming (MIGP) model was formulated to find optimal schedule and routes for vehicles 
which comply with time windows for collection at blood donation sites and vehicles scheduling 
horizon and to arrive at PDN within stipulated time. The study focuses on donated whole blood 
transportation from blood collection sites (hospitals, health institutions and other donation sites) 
within Kuala Lumpur to PDN. The model, solution and findings of this study are intended to 
provide strategies useful to PDN or other blood centres in enhancing blood transportation from 
collection points to PDN to be processed and stored for immediate or future use.   

This paper presents the overview of the problem, review of past studies, the model and 
methods, and results of this preliminary study conducted. The remaining of the paper is 
organized as follows: Section 2 provides the Literature Review; Section 3 describes the 
Methodology; Section 4 presents the Results and Discussion and finally, Section 5 is the 
Conclusion, that wraps up the whole discussion on this preliminary study. 

2. Literature Review  

Transportation is a critical component of logistics with substantial economic values in 
production and delivery system where even a small percentage improvement in fleet 
management could yield sizeable savings.  Considering BSC as essential service in health care 
systems, donated blood transportation specifically requires effective planning. Mathematical 
optimization models have played central roles in solving BTP either in transporting blood from 
blood donation sites to respective collection facilities, or from these facilities to hospitals and 
transfusion centres, to guarantee quality of blood, efficient transportation management as well 
as on-time delivery and satisfying demand for the required blood. Many studies have been 
conducted to address diverse variants of BTP.  Cheraghi et al. (2016), for example, put forward 
a Mixed Integer Linear Programming (MILP) model for BTP which addresses unpredictability 
of blood supply and aims at minimizing total transportation costs of main centres, relocation of 
provisional blood services facilities and total distribution costs for specified duration. GAMS 
was used to solve the model. Optimal results based on MILP model showed that the robust 
model is superior compared to deterministic one in handling uncertainty as well as robustness 
of the problem. Sibuea et al. (2017) formulated a Stochastic Integer Programming (SIP) model 
based on model proposed by Gunpinar and Centeno (2015) to solve BSC problem. The problem 
focused on blood group and blood age that can be used by PMI Blood Transfusion Unit (UTD) 
of Pekanbaru. The SIP model includes constraint which guarantees blood demand is satisfied 
while reducing risks and mistakes in delivery of blood for patients. Data involved demand 
scenarios from January to April 2017 of PMI UTD Pekanbaru blood group data.  Microsoft 
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Excel 2010 and LINGO 16 were used to solve the model. Solutions were utilized as basis for 
simulation of 14 days platelets distribution and blood wastage data for months involved which 
could be useful in preventing wastage and avoiding blood shortages. 

Meanwhile, Taweeugsornpun and Raweewan (2017) carried out a case study in Thailand 
for determining optimal routes for blood delivery vehicles of third-party logistics (3PL) service 
provider, where the vehicles are alternatives for hospital ambulances. An Integer Programming 
(IP) model has been formulated and used to determine exact solution which consists of optimal 
routes for vehicles. The primary goal of the IP model is to minimize total travel time from the 
National Blood Centre (NBC) to hospitals. The model was solved using IBM ILOG CPLEX. 
Two vehicles of a 3PL service provider have been designated to serve 10 hospitals in Bangkok 
metropolitan area and other provinces with airport nearby. Based on results. a maximum of 30 
minutes length of stay at hospital must be complied. Otherwise, additional vehicle is required 
for optimal routes and higher idle time incurred for vehicles. On the other hand, Heidari-Fathian 
and Pasandideh (2017) designed a novel BSC network consisting of three main echelons. which 
are donors, collection facilities and demand points. That involves main blood centres as 
permanent facilities, and two mobile facilities, mobile blood facilities and demountable 
collection centres. The proposed Mixed Integer Programming (MIP) model has one objective 
function that is to minimize total costs of BSC network using certain numerical examples. 
Sensitivity analyses conducted through changes on main parameters of the model investigate 
effects on the objective function. Heidari-Fathian and Pasandideh (2018) formulated a multi 
objective MILP model to minimize total costs of supply chain, to maximize satisfaction by 
minimizing total amounts of expired blood products and also shortage of blood products, and 
to minimize total GHG emissions of transportation activities. The bounded objective function 
method was used to transform the model into a single objective model while Lagrangian 
relaxation heuristic algorithm based on sub gradient approach is proposed to handle the 
complexity of the model. Numerical experiments using small and large sizes data showed that 
results are produced within reasonable time as compared with results of exact methods. 

 Asadpour et al. (2020) conducted a study concerning BSC problem in disaster situation 
where blood groups and expiration dates are considered. The network involved comprises of 
blood collection centres, labs for quality assurance and producing blood products, and hospitals. 
An MIP model was proposed in which the objective function is to minimize the total cost of 
network, including establishment cost of facilities, cost of transportation, and cost of holding 
inventory. The model was implemented on three randomly generated sample problems in 
different dimensions (small, medium, large), with uncertainty in demand considered, and 
solved using GAMS software. The objective function value increases as dimension gets larger 
while increasing computational time was observed with larger dimension. Jin et al. (2021) 
proposed a four-echelon blood supply chain model involving blood donors, blood donation 
houses, blood centres, and hospitals, focusing on BSC operation-related problems in 
emergencies. The objective function of the proposed dynamic stochastic optimization model is 
to minimize composite costs including shortage cost incurred in blood centres, cost of opening 
a blood donation house, and the operating cost. Computational experiments are based on data 
in Chengdu, China involving Chengdu Blood Centre, 10 blood donation houses and 20 blood 
donation groups. Model is solved using Lingo and results show that by changing average blood 
supply, the blood shortage situation is alleviated. Increase in proportion blood apheresis 
collection results in a significant decrease of total RBC shortage and RBC shortage cost, thus 
lowering the number of blood donation houses. In addition, increasing distance acceptable to 
donors lead to participation of new blood donors while proper adjustment of donation frequency 
of donor groups is necessary with respect to time interval requirements. 

The study by Karadağ et al. (2021) concerns with location-allocation model for a BSC 
network design problem that has four echelons - Mobile Blood Donation Vehicles (MBDVs), 
Blood Donation Centres (BDCs) as permanent blood collection locations, Regional Blood 
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Centres (RBCs) that perform all duties of laboratories, storage facilities and distribution centres, 
and supply/demand points. A multi objective mathematical programming model is proposed in 
which objective functions are to minimize distance between BDCs and RBCs, to minimize 
distance between RBCs and	demand points, and to minimize the travel lengths of MBDVs 
routes. These goals (objectives) are combined in an objective function by multiplying different 
priority coefficients found by prioritizing objectives using Analytical Hierarchical Process 
(AHP) with experts’ help. Model is tested based on real data from the Eastern Anatolia region 
of Turkey for various supply demand scenarios. Results indicate that proposed model gives at 
least 25% more effective solutions as compared with current situation in the region.   

Vehicle Routing Problem (VRP), proposed by Dantzig and Ramser (1959), concerns 
with servicing a set of customers using vehicles fleet based at a depot where customers’ 
locations and demands are known. The goal of VRP is to determine a set of routes in which 
each route must start at depot, visit a subset of customers and must return to depot. A customer 
can only be served by a vehicle and visited by the vehicle once. The common objective of 
VRP’s mathematical model is to minimize total distance travelled. Some examples of VRP 
variants are Capacitated VRP (CVRP), VRP with Backhauls (VRPB), Inventory Routing 
Problem (IRP) and Multi-Depot Vehicle Routing Problem (MDVRP). In the presence of 
customers’ time windows and depot time window (scheduling horizon), the VRP is known as 
VRP with Time Windows (VRPTW). According to Lenstra and Rinnooy Kan (1981), the VRP 
and VRPTW are classified as NP-hard combinatorial optimization problems which means due 
to their complexity, finding exact solutions is difficult even for moderate size instances. 
Although exact optimal solutions of VRP and VRPTW can be obtained by exact method, 
heuristic and metaheuristics approaches are more promising approaches in producing near 
optimal solutions in reasonable times for large size problems. 

An example of VRP’s application in BTP is a study by Sukaboon and Pathomsiri (2011) 
who employed Clarke and Wright Savings algorithm to determine routes for a network 
consisting of Thailand National Blood Centre (NBC) and 131 surrounding hospitals within 
Bangkok Metropolitan Region, where vehicles are managed by NBC. They proposed an MILP 
model which minimizes total distance and minimizes total travel time of routes for vehicles by 
placing a maximum travel time as constraint whereas a cut down by more than 50 percent on 
total distance is imposed to maintain an average distance of 960 km/day. Two rounds of blood 
collection were by vehicles and 12 vehicles were used.  Proposed routes were able to lessen 
number of empty trips and save energy. Meanwhile, Pathomsiri and Sukaboon (2013) 
concerned with number of vehicles utilized to transport blood from NBC every day in which 
each vehicle carries little load outbound and comes back (inbound) empty while at the same 
time there are third party vehicles which can handle the blood transportation with certain fee. 
VRP approach was used to determine estimated total transportation cost (fair price) for blood 
distribution that enables NBC to make an informed decision, either to use own vehicles or hiring 
third party. The savings algorithm was coded in Visual Basic 2008 with user interface.  
Meanwhile, Sahinyazan et al. (2015) proposed the Selective VRP (SVRP) with integrated tours 
that aims at maximizing quantity of blood collected by mobile blood collection vehicles under 
large blood collection activities at reasonable total operations cost. Blood was collected and 
brought back to depot spoil free by shuttles that visits blood mobiles at sites, allowing 
continuous blood collection by blood mobiles without them having to return to depot every day. 
Optimal routes of shuttle and blood mobiles were determined by solving a two-stage IP model 
using heuristic algorithm in reasonable computational time. The IP model was tested using past 
actual data of blood donation drives under Turkish Red Crescent in Ankara and data developed 
using GIS data of Istanbul’s European part. Computational results on both datasets indicate that 
proposed method reduces the current logistics costs.  

VRPTW for BTP from venues of donation programs to the blood bank was implemented 
by Yi and Scheller-Wolf (2003), who proposed the model and solution method that concern 
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with variable rewards and freshness constraints. The VRPTW approach was applied to solve 
BTP of the American Red Cross (ARC).  Collected blood must be brought back to blood bank 
in less than six hours to retain blood quality if it is to be decomposed into platelets. The amount 
of blood collected depends on the arrival and departure times of vehicles where more blood can 
be collected if collecting vehicles arrive at blood donation sites later in the day. Blood collection 
routes were established using three main steps, routes generation, individual route optimization, 
and route selection. An IP model has been proposed and solved optimally using CPLEX.  
Meanwhile, Yu et al. (2018) introduced Blood Pickup Routing Problem (BPRP), an extension 
of VRPTW, which constraints include blood’s spoilage time restriction. BPRP aims to 
minimize total length of routes for blood bag collection between a blood bank and donation 
sites that are subject to time window constraints that must be adhered to. BPRP follows 
VRPTW attributes and assumptions adapted to this problem. Time windows for all nodes are 
set to [60, 660], vehicle capacity is set ranging from 50 to 140 while spoilage time is fixed as 
360, where time unit is in minutes. Simulated annealing heuristic with restart strategy (SA_RS) 
was implemented in C++ and tested on small instances based on Solomon’s (1987) VRPTW 
instances and also tested using some newly generated BPRP instances. Results compared with 
those obtained by CPLEX indicates SA_RS metaheuristic effectively solved BPRP.   

 The VRP and VRPTW of the BTP have also been formulated using the nonlinear 
programming models.  For example, Iswari et al. (2018) formulated a Mixed Integer Nonlinear 
Programming (MINLP) model for problem known as Blood Mobile Collection Routing 
Problem (BMCRP). The model aims at achieving the minimum total distance of blood 
collection routes, where time window and service time have been set for each blood collection 
site. The MINLP model has been evaluated using eight hypothetical data sets of small cases 
VRP and solved using LINGO to determine the optimal routes. In addition, Ghasemi and 
Bashiri (2018) proposed a two-stage stochastic Selective-Covering-Inventory-Routing (SCIR) 
model. The goal of the model is to handle the distribution of whole blood under uncertainty 
involving the identified blood centre and blood mobile facilities. The solution of the SCIR 
model were obtained using CPLEX solver in which the impact of parameters variations has 
been analyzed based on model’s outputs and costs. A study by Normasari and Muallifah (2020) 
concerned with the Maximum Blood Collection Routing Problem (MBCRP), an extension of 
VRPTW, to determine the location of blood donation sites to be visited by the blood collection 
vehicles in which blood spoilage time limitation is considered. MINLP model was proposed 
and the model was coded in AMPL and solved using CPLEX. The objective function of the 
MINLP model is to maximize quantity of blood collected from donation sites. Each donation 
site can only be visited by a collection vehicle at most once. The model was tested using small 
case of one depot (the blood centre), five blood donation sites and two vehicles, where capacity 
of blood collection vehicle is 40 blood bags and the spoilage time is 360 minutes (six hours). 
The MINLP model performed effectively with optimal routes found. In addition, a review 
concerning blood collection distribution based on VRP can be found in Azezan et al. (2017). 
The survey paper analyses the models, algorithms and solution methods which were used by 
some past studies. Although there have been many studies which solve VRP and VRPTW 
related to BTP from donation sites to blood bank or from blood bank to hospitals or transfusion 
centres conducted in many countries in the world, studies on BTPs in Malaysia are still lacking. 

3. Methodology 

This section discusses data and methods used in this preliminary study. Data from PDN include 
general information on PDN’s blood donation programs and activities, details of donation sites 
and operations, resources involved (vehicles, staffs, beds, equipment, etc.), volume of donated 
blood, and related costs involved. According to PDN, for every 100 donors at a donation site, 
one clerk, one doctor, three nurses and one lab technician are needed.  In other words, resources 
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required vary based on number of donors at blood donation sites.  Vehicles are used mainly to 
transport the equipment and staffs while one vehicle is allocated to collect donated blood from 
donation sites and transport them to PDN within six hours.  

The MIGP model for the VRPTW of BTP in this study was formulated based on a 
VRPTW models proposed in Shuib (2007) and Shuib and Muhamad (2018). The MIGP model 
has four goals pursued which are to minimize total distance travelled by vehicles, to minimize 
the vehicles’ total travel time, to minimize total waiting time of vehicles at locations and to 
minimize number of vehicles (routes). VRPTW involves a fleet of homogeneous vehicles, a 
directed graph 𝐺(𝑁, 𝐴) and a set of customers, 𝐶 where 𝐶 = {1, 2, … , 𝑛}.  The set 𝑁 has 𝑛 + 2 
vertices, 𝑁 = {0, 1, 2, … , 𝑛, 𝑛 + 1}, in which 𝑛 denotes number of customers. The depot is 
represented by node 0 (driving-out depot) while node 𝑛 + 1 (returning depot), where “driving-
out” and “returning” depots are assumed identical. Arcs set 𝐴 represents links between depot 
and customers and connections between a pair of customers. For each arc (𝑖, 𝑗). 𝑖 ≠ 𝑗, 𝑐!" 
denotes the cost (distance) associated to this arc while 𝑡!" represents the direct travel time from

 to 𝑗. The capacity of a vehicle is denoted by	𝑄#, 𝑘 = {1, 2, … , 𝐾} whereas 𝑑! represents the 
demand of any customer	𝑖.  The earliest and latest time for service for customer 𝑖 is indicated 
by time window [𝑎! , 𝑏!].  The earliest a vehicle is allowed to serve customer 𝑖 is at time	𝑎!.  If 
arriving earlier than 	𝑎!, the vehicle has to wait until this earliest time and waiting time (	𝑤!) 
incurred.  Vehicle must arrive and serve customer 𝑖 the latest by 	𝑏!. The depot time window is 
[𝑎$, 𝑏$] where [𝑎$, 𝑏$] = [𝑎%&', 𝑏%&'] and this is known as vehicle’s scheduling horizon. 
Vehicles cannot leave depot earlier than 𝑎$ and must arrive back at depot before or by	𝑏%&'. 
The triangular inequality is assumed to be satisfied for both 𝑐!" and 𝑡!".  VRPTW’s target is to 
determine a set of minimal cost routes, one route per vehicle where each customer is serviced 
exactly once and every route starts at node 0 and finishes at 𝑛 + 1 while the time windows and 
capacity constraints must be adhered. MIGP model for the VRPTW is formulated as follows: 
 
Notations: 
𝑛 : number of donation sites  
𝐾 : number of vehicles 
𝐶 : set of donations sites, 𝐶 = {1, 2, … , 𝑛} 
𝑁 : set of nodes including PDN (depot) 
𝑖, 𝑗	 : indices for nodes where 	𝑖 = 0, 1, 2, … , 𝑛 ; 𝑗 = 	1, 2, … , 𝑛, 𝑛 +1; 𝑖 ≠ 𝑗 
𝑘 : index for vehicles, 𝑘 = 1, 2, … , 𝐾 
𝑐!" : distance travelled from 𝑖 to 𝑗 
𝑡!" : direct traveling time from to 𝑗 
𝑑! : demand at	𝑖 (quantity of donated blood at 𝑖) 
𝑓! : service time, (15 minutes for donation site and 0 min or no service at depot) 
	𝑄# : vehicle capacity (𝑄# is 50,000 ml for any vehicle 𝑘)  
	𝑟# : maximum travel time of any vehicle 𝑘  
[𝑎! , 𝑏!]  : service time window, 𝑖 = 1, 2, … , 𝑛. Note: [𝑎$, 𝑏$] = [𝑎%&', 𝑏%&'] is depot time 

window. 
 
Decision Variables: 
𝑥!"# : decision variable that represents whether traveling from 𝑖 to 𝑗 in vehicle 𝑘 where 

𝑥!"# = D1, if vehicle k travels from i to j, 	𝑖 ≠ 𝑗.																																																
0, otherwise.																																																																																														 

and 𝑖, = {0, 1, 2, … , 𝑛}, 𝑗 = {1, 2, … , 𝑛, 𝑛 + 1} 

i

i
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𝑤! : waiting time at 𝑖, 𝑖 = {0, 1, 2, … , 𝑛} and 𝑤$ = 0 (no waiting time at depot) 
	𝑠!# : vehicle 𝑘 start time of service at 𝑖, 𝑖, = {0, 1, 2, … , 𝑛}, 𝑘 = {1, 2, … , 𝐾}. At depot, 

𝑠$# = 0 for all 𝑘. 
 
MILP Model Formulation for the VRPTW: 

Minimize OOO𝑐!"𝑥!"#
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≤ 𝑄# 𝑘 = 1, 2, … , 𝐾 (10) 

𝑠!# + 𝑡!" −𝑀(1 − 𝑥!"#) ≤ 𝑠"# 𝑖 ≠ 𝑗, 𝑘 = 1, 2, … , 𝐾 (11) 
𝑎! ≤ 𝑠!# ≤ 	𝑏! 𝑖 ∈ 𝑁, 𝑘 = 1, 2, … , 𝐾 (12) 

OO(𝑡!" + 𝑓! +𝑤!)𝑥!"#

%&'

"('

%

!($

≤ 𝑟# 𝑖 ≠ 𝑗, 𝑘 = 1, 2, … , 𝐾 (13) 
 

𝑥!"# = {0,1}, 𝑤! ≥ 0, 𝑠!# ≥ 0 𝑖 = 0,… , 𝑛, 𝑗 = 1, . . , 𝑛 + 1, 𝑖 ≠ 𝑗, 𝑘 = 1, . . , 𝐾 (14) 
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3.1  Model Description 

Objective functions (1), (2), (3) and (4) represent the goals of the model where their order is 
based on lexicographic method and has been pre-specified. The primary goal, given by Eq. (1), 
is to minimize total distance travelled. Meanwhile, the second goal, Eq. (2), is to minimize total 
travel time that is by adding waiting time and service time at 𝑖	to traveling time from 𝑖 to 𝑗.  The 
third goal or objective function (3) is to minimize total waiting time of vehicles.  Equation (4) 
represents the fourth goal that is to minimize the number of vehicles (routes). Equation (5) 
guarantees that exactly one outgoing arc from the depot for any vehicle. The constraint denoted 
by Eq. (6) dictates that, for each vehicle, there is exactly one arc into the depot. A complete 
tour for each vehicle is guaranteed by constraints (5) and (6). Equation (7) is constraint that 
restricts for each vehicle 𝑘, only one arch emanates from each node 𝑖.  On the other hand, Eq. 
(8) ensures that for each vehicle 𝑘, only one arc enters 𝑗. Both constraints (7) and (8) are 
necessary to ensure each vehicle visits each node exactly once. Constraint given by Eq. (9) 
controls the vehicle such that it leaves the depot, arrives at a customer and serves this customer, 
leaves this customer and proceed similarly until finally going back to depot. Equation (10) 
represents constraint that ensures that a vehicle does not exceed its capacity whereas Eq. (11) 
indicates a vehicle 𝑘 cannot arrive at 𝑗 before 𝑠!# + 𝑡!" when travelling from 𝑖 to 𝑗	and 𝑀 
represents large scalar. Constraint (12) guarantees time windows are adhered to and Constraint 
(13) ensures total travel time for vehicle does not exceed maximum route time. Eq. (14) 
specifies binary integer values for 𝑥!"# and non-negativity constraints for 𝑤! and 𝑠!#. 

3.2  Methods 
VRPTW model has been applied to solve BTP in this preliminary study which involves Time 
Oriented Heuristics (TOS) and adopting some concepts described by Yi and Scheller (2003). 
The first phase is the clustering stage where locations of donation sites (nodes) are represented 
by polar coordinates. Once the centre of "gravity" is fixed, locations of donation sites are 
ordered by their coordinates. A cluster is established by assigning sites to vehicles using counter 
clockwise sweep and ensuring vehicle capacity is not exceeded. The second phase concerns 
with establishing route for vehicle schedule for the cluster that has been formed. Note that few 
customers in this cluster possibly may not be able to be scheduled in the route due to time 
window constraints.  Similar clustering process is carried out for the remaining unrouted nodes 
using next vehicle by another counter-clockwise sweep starting from the line that bisects the 
region of the previous cluster. Then routing is done. The steps are repeated until all sites have 
been included. The main steps for the blood transportation’s VRPTW are as follows:   

i) establish Cartesian coordinates for donation sites and depot with the depot at the origin;  
ii) convert the locations’ Cartesian coordinates into polar coordinates;   
iii) perform clustering of sites using counter-clockwise sweep approach by adhering to the 

vehicle capacity;  
iv) establish the route by first selecting the first site using certain criterion;  
v) perform insertion of one site at a time, as many sites as possible, but satisfying all 

associated time window constraints; and  
vi) repeat steps iii) until v) until all sites have been scheduled in which another vehicle is 

used whenever a new cluster is formed.   

TOS starts a route by using either: a) the farthest node which is not yet routed; b) the 
earliest deadline unrouted node; or c) the unrouted node with minimum equally weighted route-
time and distance criteria combined.  In this study, the first blood donation’s site to be visited 
for a vehicle is decided using b). Two measures, 𝑐'(𝑖, 𝑢, 𝑗) and 𝑐.(𝑖, 𝑢, 𝑗) have been used at 
every iteration for choosing and inserting a blood donation’s site, one at a time, into the 
currently constructed route as follows.  Let (𝑖$. 𝑖', 𝑖., … , 𝑖/) be the route, 𝑖$ and 𝑖/ denotes the 
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depot (beginning and end of route), where 𝑚 = 𝑛 + 1. The best feasible insertion place (𝑖0, 𝑗0) 
for unrouted site 𝑢 in this route is determined by: 𝑐'(𝑖0, 𝑢, 𝑗0) = min	-('….,/	𝑐'P𝑖-3', 𝑢, 𝑖-Q.  
The insertion of 𝑢 in between 𝑖-3' and 𝑖- may influence the start times at sites 𝑖-, … , 𝑖/. The 
begin times for remaining sites may be affected by delays at any prior sites with the possibility 
that the route could become infeasible (starting time at these sites are after the latest start times). 
Hence, sequential inspection must be done to each site, until 𝑃𝐹! = 0, i.e., the following sites 
will not be affected by the push forward or time infeasibility. Once the best insertion place is 
found, the best site 𝑢∗, to be inserted between 𝑖0 and 𝑗0. is selected as described in Eq. (15) in 
which 𝑢 is unrouted and feasible.   
 𝑐.(𝑖0∗ , 𝑢∗, 𝑗0∗) = max(𝑐.(𝑖0, 𝑢, 𝑗0)) 

 (15) 

The step is repeated until no more sites with feasible insertion can be found. Then, a new 
route in similar manner until all sites have been routed. Solomon (1987) Insertion Type (I) 
heuristic, represented as 𝑐'', is considered the most successful sequential insertion heuristic 
and has been applied extensively in the heuristics for VRP and VRPTW.  Its criteria are as 
given by Eq. (16), Eq. (17), Eq. (18) and Eq. (19), where 𝑏"0 is the new begin time of service 
at 𝑗, given 𝑢 is in the route while 𝑑!" is distance from 𝑖 to 𝑗.  Parameter 𝜇 controls the savings 
in distance. The best feasible insertion place for an unrouted site is decided using 𝑐'(𝑖, 𝑢, 𝑗	) 
that minimizes the measure of extra distance and time required to visit the site.  Meanwhile, 𝛼' 
and 𝛼. are factors representing how much the best insertion place for the unrouted site depends 
on extra distance and time required to visit the site by the current vehicle. The parameter 𝜆 
indicates how much the best insertion place for this site depends on its distance from depot.  
Solomon (1987) used the combinations of these parameters as given in Eq. (20), where this 
insertion heuristics maximizes the benefit derived from servicing a site on the partial route 
being constructed rather than on a direct route.   

 𝑐''(𝑖, 𝑢, 𝑗	) = 𝑑!0 + 𝑑0" − 𝜇𝑑!"   ,  𝜇 ≥ 0  (16) 
 𝑐'.(𝑖, 𝑢, 𝑗	) = 𝑏"0 − 𝑏"       (17) 
 𝑐'(𝑖, 𝑢, 𝑗	) = 𝛼'𝑐''(𝑖, 𝑢, 𝑗	) + 𝛼.𝑐'.(𝑖, 𝑢, 𝑗	)  , 𝛼' + 𝛼. = 1, 	𝛼', 𝛼. ≥ 0 (18) 
 𝑐.(𝑖, 𝑢, 𝑗	) = 𝜆𝑑$0 − 𝑐'(𝑖, 𝑢, 𝑗	)   , 𝜆 ≥ 0  (19) 
 (𝑢, 𝜆, 𝛼', 𝛼.):		(1,1,1,0), (1, 2,1,0), (1,1,0, 1), (1, 2, 0	1)  (20) 

 
Figure 1 provides an illustration on VRPTW scenario of donated blood collection, with 

time windows. [𝑎! , 𝑏!] represents the time windows at each site 𝑖 and [𝑠!# , ℎ!#] represents the 
range of service time at site 𝑖, where 𝑖 = 1, 2, … , 𝑛.  If any of the time windows is violated, the 
route becomes infeasible. Similarly, if depot time window is violated, then time restriction for 
blood to arrive at the blood centre within six hours is exceeded, thus, route is also infeasible. 

 

 
 

 

 

 

Figure 1.  Time Windows for the Blood Collection Sites 
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4. Results and Discussion  

Table 1 displays the locations coordinates of blood donation sites and PDN (the depot) in 𝑥𝑦-
Cartesian coordinate system. where PDN coordinates of is (0, 0). These donation sites shown 
are the most common locations selected by organizations and private health institutions in 
organizing blood donation campaigns within the area specified by this study. Locations of PDN 
and blood donation sites are as shown in Figure 2.  
 

Table 1.  Locations Coordinates 

 Location Coordinates 
Blood Collection Sites 𝒙 𝒚 

PDN 0    0 
Ampang 30   -13 

Jln. Ampang 20   -10 
Cheras 20   -42 

Selayang -25   32 
Setapak 5   10 

Bukit Bintang 6 -19 
  

Figure 2.  Blood Donation Sites 
 

Table 2 shows Euclidean distances from PDN to blood donation site and between any 
pair of blood donation sites. Distance is taken as travel time (in minutes) where 1 kilometre 
represents 1 minute travel time. Actual service time has been approximated as 15 minutes or 
less at each site. However, for simplicity, service time is assumed constant, which is 15 minutes 
per collection site. Table 2 also shows two sets of time windows (in minutes) representing first 
and second round of blood collection in a day at each site, denoted as TW1 and TW2, 
respectively. The earliest a vehicle can depart from PDN is at 9.00 a.m (minute 0) while latest 
time to arrive back at PDN is at 3.00 p.m. (minute 360), thus, PDN’s time window is [0, 360].  
Time windows for donation sites are set based on number of donors for these sites in which the 
site with less number of donors is given earlier beginning time window. For example, time 
windows for Ampang which is [260, 290] refers to [1.20 p.m., 1.50 p.m.]. Range for each time 
window at donation site is between 20 to 60 minutes for TW1 and 20 to 240 minutes for TW2. 
A vehicle is allowed to collect blood only within given time windows at each site, say 𝑖, 
represented by [𝑎! , 𝑏!]. If vehicle arrives too early (before 𝑎!), then waiting time encountered.  
After collecting blood at site 𝑖, the vehicle’s departure time at this site should not exceed latest 
time window, 𝑏!.  Otherwise, time window is violated. Total schedule time for blood collection 
cannot exceed six hours. The MIGP model was solved using the TOS heuristic algorithm coded 
using Fortran. The MIGP model utilized preemptive goal programming technique described by 
Taha (2017) based on a strict dominance order of goals (objective functions) where highest 
priority is minimizing total distance travelled, second priority is minimizing total travel time, 
minimizing total waiting time for the fleet of vehicles is the third priority and minimizing 
number of vehicles or routes is last priority. Homogeneous vehicles, which can transport up to 
𝑄# = 150,000 ml of blood, are utilized. Data on amount of blood to be collected at each 
donation site (based on past data of PDN) are as shown in the last column of Table 2.   

Figure 3a illustrates the optimal routes obtained by solving the model using TW1. These 
routes are PDN à Setapak à Jln. Ampang à Cheras à Bukit Bintang à Ampang à PDN 
(Vehicle 1) and PDN à Selayang à PDN (Vehicle 2).  Vehicle 2 is required because the time 
window of PDN will be violated if Selayang was included in the first route (Vehicle 1). For 
Vehicle 1, Departure Time (DT) from PDN is 108.8 (10.49 a.m.), Total Distance (𝑇𝐷) =

Setapak

Selayang

Jln Ampang

PDN

Ampang

Bukit Bintang

Cheras-50

0

50

-50 -30 -10 10 30 50
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152.5, Total Waiting Time (𝑊𝑇) = 0, Total Service Time (𝑆𝑇) = 75, Total Travel Time 
(𝑇𝑇) = 	227.5 (3 hr. and 47 min.) and Arrival Time (AT) at PDN is 336.3 (2.36 p.m.). Total 
amount of blood collected by Vehicle 1 is 27,000 + 27,450 + 34,200 + 24,750 + 26,100 = 
139500 ml.  Meanwhile, Vehicle 2’s DT from PDN is at 254.4 (1.14 p.m.) with one collection 
site at Selayang, 𝑇𝐷	 = 	81.2, 𝑊𝑇	 = 	0, 𝑆𝑇	 = 	15, 𝑇𝑇	 = 	96.2 (1 hr. and 36 min.) and AT at 
PDN is 336.3 (2.50 p.m.).  Amount of blood collected using Vehicle 2 is 38,250 ml. 

Table 2.  Euclidean Distance between Blood Collection Sites (𝒄𝒊𝒋) 

Site 𝒊 PDN Amp JA Ch Sg Sk BB Time Windows [𝒂𝒊, 𝒃𝒊] Blood 
Collected 

(ml) TW1 TW2 
PDN 0 32.70 23.36 46.52 40.61 11.18 19.92 [0,360] [0,360] 
Amp  0 10.44 30.68 71.06 33.97 24.74 [260,290] [260,330] 26,100 
JA   0 32.00 61.55 25.00 16.64 [150,190] [150, 210] 27,450 
Ch    0 86.61 54.12 26.93 [200,235] [235,270] 34,200 
Sg       0 37.20 59.68 [295,325] [110,330] 38,250 
Sk      0 29.02 [120,140] [120,180] 27,000 
BB       0 [240,295] [240,295] 24,750 
Note: Amp: Ampang, JA: Jln. Ampang, Ch: Cheras, Sg: Selayang, Sk:  Setapak, BB:  Bukit Bintang 

 

 
Figure 3a.  Blood Transportation based on TW1 
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Figure 3b.  Blood Transportation based on TW2 

  
 
Meanwhile, Figure 3b displays optimal routes based on TW2. Two vehicles are 

employed for blood transportation. These routes:  Vehicle 1: PDN à Selayang à Jln. Ampang 
à Cheras à Ampang à PDN and Vehicle 2:  PDN à Setapak à Bukit Bintang à PDN.  For 
Vehicle 1, DT from PDN is at 10.00 a.m. overall 𝑇𝐷 = 197.6, 𝑊𝑇 = 10.8 (at Selayang and 
Cheras), 𝑆𝑇 = 60 (4 sites), 𝑇𝑇 = 268.4 (4 hr. and 28 min.) and AT at PDN is 328.4 (2.28 p.m.).  
Amount of blood collected using Vehicle 1 is 126,000 ml, that is 38,250 + 27,450 + 34,200 + 
26,100 ml. As for Vehicle 2, DT from PDN is at 11.00 a.m., 𝑇𝐷 = 60.1, 𝑊𝑇 = 64.8	(1 hr. and 
4.8 min.), 𝑆𝑇 = 30 (2 sites), 𝑇𝑇 = 154.9 (2 hr. and 35 min.) and AT at PDN is 274.9 (1.35 
p.m.).  Total amount of blood collected is 27,000 + 24,750 ml or 51,750 ml.  In TW2, time 
windows at donation sites can be larger, between 20 minutes to 240 minutes. Note that Selayang 
site has a wide time window for collection. Advantage of this larger time window is Selayang 
will be easily scheduled. However, if there is no other site with earlier beginning time window, 
then Selayang will be likely scheduled as first site to be visited by the collecting vehicle. Thus, 
amount of donated blood collected at this site cannot be optimized. Another disadvantage is the 
beginning time window for second round collection for Selayang need to be early to ensure 
blood arrives at PDN within six hours. Nevertheless, optimal solutions obtained based on TW1 
and TW2 ensured that six hours restriction has been complied.  

Two more variants of time windows, namely TW3 and TW4, for all the donation sites 
have been used to further explore the model and investigate possible scenarios concerning the 
blood collection transportation from sites to PDN.  The time windows and results are as shown 
in Table 3. Based on results, variants of time windows may produce different optimal solutions 
concerning routing and scheduling of vehicles for collection of donated blood.  In general, it is 
observed that one vehicle is likely to be able to collect blood from five sites without violating 
time window restrictions. However, six sites or more would require more than one vehicle.   
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Table 3.  Results based on Other Variants of Time Windows at Donation Sites 

Label Sites (𝒊) TW3 Optimal Solution TW4 Optimal Solution 
0 PDN [0, 360] Vehicle 1 

0à4à2à3à1à0 
𝑇𝐷 = 197.5; 𝑆𝑇 = 60; 
𝑊𝑇 = 50.2; 	𝑇𝑇 = 307.7;  
Blood collected: 126,000 ml 
Vehicle 2 
0à5à6à0 
𝑇𝐷 = 60.1; 𝑆𝑇 = 30; 
𝑊𝑇 = 76.0; 	𝑇𝑇 = 166.1;  
Blood collected: 51,750 ml 

[0, 360] Vehicle 1 
0à5à2à3à6à1à0 
𝑇𝐷 = 152.5; 𝑆𝑇 = 75; 
𝑊𝑇 = 0.0; 	𝑇𝑇 = 227.5;  
Blood collected: 139,500 ml 
Vehicle 2 
0à4à0 
𝑇𝐷 = 81.2; 	𝑆𝑇 = 15; 
𝑊𝑇 = 0.0; 	𝑇𝑇 = 96.2;  
Blood collected: 38,250 ml 

1 Ampang [260, 290] [260, 290] 
2 Jln. Ampang [150, 190] [150, 190] 
3 Cheras [200, 235] [200, 235] 
4 Selayang   [0, 360] [185, 240] 
5 Setapak [120, 140] [120, 140] 

6 Bukit Bintang [240, 295] [240, 295] 
 

As proposed by optimal solutions found using VRPTW MIGP model and TOS heuristic, 
instead of having six vehicles to transport donated blood from six blood donation sites (one 
vehicle per site) to PDN, number of vehicles can be reduced to two vehicles. Thus, the optimal 
solutions have the potential to contribute towards more costs savings in transporting the donated 
blood from all donation sites. In terms of computational time, the output is produced within a 
very short time, which is less than one minute. It is expected that the computational time will 
increase with the increase in the number of blood collection sites. In addition, the same 
approach using the same model can be proposed to determine the route and schedule of vehicles 
for the second round of blood collection for the day. However, emphasis must be given on the 
earliest collection time so that amount of collected blood could be optimized based on the first-
round collection for the day at the respective sites while at the same time ensuring the blood 
donated can arrive at PDN within six hours from the time they were donated.   

In general, when solving the VRPTW for transportation of blood collected at donation 
sites to PDN, the following aspects should be considered:  
• Having almost similar time windows at many sites can cause violation in time windows 

for service due to push-forward insertions. This can also cause an increase in the number 
of vehicles utilized because of inability to schedule as many sites serviced by any 
collecting vehicle due to time window limitations. 

• The time windows for each site should not be too tight, i.e., difference between the 
earliest (begin) time window,	𝑎!, and the latest (end) time window, 𝑏!, should be 
sufficiently large. 

• Place restriction on the earliest time windows for the blood donation sites to ensure that 
the collected amount of blood donation at each site is optimized. 

• Avoid combination of open time windows, in this case [0,360], or large time windows 
together with tight time windows at blood collection sites, because this might lead to 
more vehicles being used due to limited choices for insertions in routing. 

5. Conclusion  

Based on results of the preliminary study, it can be concluded that number of vehicles assigned 
to blood collection sites in one day can be reduced.  From the current blood collection practice, 
one vehicle is needed at each site to collect the blood, thus, in the case of six blood donation 
sites, six vehicles are utilized. However, based on the proposed MIGP model and optimal 
solution found, number of vehicles required could be decreased to two vehicles. Thus, reduction 
in number of vehicles used would imply possible reduction in costs and resources required for 
transportation of donated blood to PDN. However, the complexity in scheduling and routing 
the vehicles to transport the donated blood would increase when a larger number of blood 
donation campaigns are organized, hence larger number of sites, in one day. Thus, our study 
will work on the formulation of an enhanced mathematical model with additional constraints 
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to represents more restrictions imposed and to solve this model using heuristics or 
metaheuristics. These model and approaches and better strategies entailed will be useful for 
PDN especially when it is responsible not just overseeing blood donation campaigns but also 
managing the strategic, tactical and operational decision in terms of blood collection from 
donation sites to blood collection centres and distribution of blood from PDN or these blood 
collection centres to hospital or any blood transfusion centres. Thus, initiatives that could 
optimize the costs and resources required, such as proposed in our preliminary and further 
study, should be explored further. The model and method of this study can be extended by 
considering multi-depot (involving PDN and other blood centres). 
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