EFFECT OF MICRO-SIZED SILICON DIOXIDE (SiO₂) ON THE ELECTRICAL PROPERTIES OF CHITOSAN BASED POLYMER ELECTROLYTE

FAZIDA ASMA BINTI OMAR

BACHELOR OF SCIENCE (Hons.) PHYSICS FACULTY OF APPLIED SCIENCE UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM

This Final Year Project Report entitle "Effect of Micro-sized Silicon Dioxide (SiO₂) on the Electrical Properties of Chitosan Based Polymer Electrolyte" was submitted by Fazida Asma Binti Omar, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Physics, in the Faculty of Applied Sciences, and was approved by

> Dr. Tah Winie Supervisor Faculty of Applied Sciences Universiti Teknologi MARA 40450 Shah Alam, Selangor

Prof MadyalMd Yusoff Theeran Project Coordinator Faculty of Applied Sciences Universiti Teknologi MARA 40450 Shah Alam, Selangor Dr. Abdul Malik Marwan Ali Head of Physics Program Faculty of Applied Science Universiti Teknologi MARA 40450 Shah Alam, Selangor

2 7 1111 2012 Date:_____

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENT	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xi
ABSTRACT	xii
ABSTRAK	xiii

CHAPTER 1: INTRODUCTION

1
2
3
3
3

CHAPTER 2: LITERATURE REVIEW

2.0	Polymer electrolyte		
2.1	Definition of Polymer electrolyte		4
	2.1.1	Solid polymer electrolyte	6
	2.1.2	Gel/plasticizer polymer electrolyte	7
	2.1.3	Composite polymer electrolyte	8
2.2	Chitosan		
	2.2.1	Definition of chitosan	10
	2.2.2	Chitosan as polymer electrolyte	11
2.3	Silicon Dioxide (SiO ₂)		
	2.3.1	Silicon dioxide as a filler	12

CHAPTER 3: METHODOLOGY

3.0	Materials		
3.1	Equipments		
3.2	Preparation of sample		
3.3	Characterization Method		
	3.3.1	Electrical Impedance Spectroscopy (EIS)	18
	3.3.2	Dielectric constant and loss, (ϵ_r and ϵ_i) measurement	19
	3.3.3	Real and imaginary of electrical modulus, (Mr and Mi) measurement	20
	3.3.4	Tangent loss, tan δ	20
	3.3.5	Relaxation time, τ	21
	3.3.6	Activation energy, E _A	21
3.4	Fourier Transform Infrared Spectroscopy		
	3.4.1	Structurally characterize the chitosan through FTIR	22
	3.4.2	Concept of FTIR	23

CHAPTER 4: RESULTS AND DISCUSSION

4.0	Analysis result	24	
4.1	Bulk resistivit	24	
4.2	Polymer electrolyte characterization		
	4.2.1	Electrical behavior	26
	4.2.2	Electrical conductivity, σ	27
4.3	Room temperature ionic conductivity		28
	4.3.1	Dielectric studies	29
	4.3.2	Modulus formalism studies	32
	4.3.3	Loss tangent studies	34
	4.3.4	Relaxation time studies	35
4.4	Electrical studies at temperature dependence		36
	4.4.1	Activation energy	38
	4.4.2	Dielectric constant	39
	4.4.3	Loss tangent	40
4.5	FTIR spectros	scopy studies	41

ABSTRACT

EFFECT OF MICRO-SIZED SILICON DIOXIDE ON THE ELECTRICAL PROPERTIES OF CHITOSAN-BASED POLYMER ELECTROLYTE

Polymer electrolyte based on lithium triflate, LiCF₃SO₃ salt, high molecule weight of chitosan from natural polymer and filler micro sized silicon dioxide, SiO₂ was prepared using casting technique. The effect of filler micro-sized silicon dioxide on the ion mobility of chitosan-LiCF₃SO₃ electrolyte has been investigated. The ionic conductivity of chitosan-LiCF₃SO₃-SiO₂ system has conducted over wide range of frequency and at temperatures between 303 K and 343 K. The conductivity is due to the ionic mobility and charge carrier. The conductivity was calculated using the value of bulk impedance that obtain from the impedance spectroscopy by the Cole-cole plots illustrating the variation of the negative imaginary impedance with the real impedance. Dielectric data were analyzed using the complex permittivity, ε^* , complex electrical modulus, M^{*}, tangen loss, tan δ , relaxation time and activation energy have determines at various temperature and frequencies. The temperature dependent conductivity data for each sample obeys an Arrhenius relationship. FTIR spectroscopy technique were used in the complexation studies.