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ABSTRACT 
 
The conventional double exponential smoothing is a forecasting method that troubles the 
forecaster with a tremendous choice of its parameter, alpha. The choice of alpha would greatly 
influence the accuracy of prediction. In this paper, an integrated forecasting method named 
Golden Exponential Smoothing (GES) is proposed to solve the problem of choosing the 
optimum alpha. The conventional method needs human intervention in which the forecaster 
would determine the most suitable alpha or else the prediction accuracy will be affected. This 
method is reformed and interposed with Golden Section Search such that an optimum alpha 
could be identified during the algorithm training process. Numerical simulations of four sets of 
times series data are employed to test the efficiency of the GES model. The findings show that 
the GES model is self-adjusted according to the situation and converged fast in the algorithm 
training process. The optimum alpha, which is identified from the algorithm training stage, 
demonstrates good performance in the stage of Model Testing and Usage. 
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1. Introduction 

The simplicity (Feiyan et al., 2012; Muhamad & Din, 2017; Ostertagová & Ostertag, 2011),  
straightforward (Crevits & Croux, 2016) and little computation (Ostertagová & Ostertag, 2011; 
Shastri, 2015) of the exponential smoothing method has caused this method to become one of 
the popular choices for forecasting (Muhamad & Din, 2017; Ostertagová & Ostertag, 2011). 
For example, researchers used exponential smoothing to forecast and model the solar power 
generation (Singh, 2015), the tourist arrival in J&K India (Shastri, 2015), daily temperature 
level data (Muhamad & Din, 2017) and networked control system based on state estimation 
(Xu et al., 2014). 

The exponential smoothing method could be classed as a big forecasting family 
(Muhamad & Din, 2017; Wu et al., 2016), the family members are constituted by single 
exponential, double exponential and triple exponential smoothing methods. The single 
exponential smoothing is used for time series data that has no trend or seasonal component 
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(Crevits & Croux, 2016; Ostertagová & Ostertag, 2011). The double exponential smoothing 
method which comprises of Brown’s one parameter linear method and Holt’s two parameters 
method can handle time series data with trend (Feiyan et al., 2012; Shastri, 2015; Wu et al., 
2016). Triple exponential smoothing, Winter’s three parameters trend and seasonality method, 
is meant for handling the data which consists of trend and seasonality (Crevits & Croux, 2016; 
Wu et al., 2016).  

All of the exponential smoothing methods have smoothing parameters (Crevits & Croux, 
2016; Feiyan et al., 2012). The single exponential smoothing and Brown’s methods are 
forecasting equations with one smoothing parameter (Muhamad & Din, 2017). Holt’s method 
consists of two smoothing parameters (Muhamad & Din, 2017) and Winter’s method has three 
smoothing parameters. These parameters are adjustable constants that would give significant 
impact on the accuracy of forecasting (Ostertagová & Ostertag, 2011). Unfortunately, the 
identification process of these parameters is difficult as no specific regulation or guidance exist 
(Feiyan et al., 2012; Wu et al., 2016). Most of the time, the decision is made based on the 
subjective experience of forecaster (Feiyan et al., 2012; Wu et al., 2016) or brutal-force search 
(Muhamad & Din, 2017). 

Many research works had been found to improve the accuracy of the exponential 
smoothing method. Wu et al. used the grey accumulating generation operator to smooth the 
data random interference into the double exponential (Wu et al., 2016). Crevits & Croux 
introduced a robust alternative for forecasting equation by using robust maximum likelihood 
parameter estimation (Crevits & Croux, 2016). Feiyan et al. introduced a new smoothing 
parameter β into the conventional double exponential smoothing which only consists of one 
parameter α (Feiyan et al., 2012). Yet, the research in reducing the difficulty of choosing and 
identifying appropriate parameters is little. As a complement to the existing research work, 
Golden Exponential Smoothing, which Golden Section Search is incorporated into a double 
exponential smoothing method, is introduced for the present study. The Golden Exponential 
Smoothing method would be able to do forecast with its self-adjusted optimum parameter. 

2. Golden Ratio and Golden Section Search 

 
 
 
 
 
 

Figure 1: Golden ratio and golden cut in line segment. 
 
The Ancient Mathematicians believed that proportionality is the main contributor to the 
elegance of object (Akhtaruzzaman & Shafie, 2012; Kalajdzievski, 2008). They defined 
proportionality in a very explicit way, if there is a point X on a line segment (Figure 1) 
(Akhtaruzzaman & Shafie, 2012; Kalajdzievski, 2008) such that Eq.(1) is true (Che et al., 
2014), these ratios Eq.(1) are called golden ratio and the point X is called golden cut. Then, 

from algebra manipulation (Eq.(2) to Eq.(4)), the golden ratio could be equalled to 
ିଵା√ହ

ଶ
 

(Hughes, 2011) which traditionally denoted by Greek Letter 𝜑 (Akhtaruzzaman & Shafie, 2012; 

Kalajdzievski, 2008) (The 
ିଵି√ହ

ଶ
 is being disregarded). It should be noted that ିଵା√ହ

ଶ
= 0.618 and 

it varies inversely 
ଵ

ఝ
=  1.618 are supposed to express the golden ratio (Stakhov, 1989). 

 
 
 
 

a 
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𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑜𝑛𝑔𝑒𝑟 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑤ℎ𝑜𝑙𝑒 𝑙𝑖𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
=

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓𝑠ℎ𝑜𝑟𝑡𝑒𝑟 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑜𝑛𝑔𝑒𝑟 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
 

 



=

ି


  

Let 𝜑 =



 

                                  𝜑 =
ଵ

ఝ
− 1                     (2) 

                                           𝜑ଶ + 𝜑 − 1 = 0                                  (3) 

                                             𝜑 =
ିଵି√ହ

ଶ
 𝑜𝑟 𝜑 =

ିଵା√ହ

ଶ
                                                             (4) 

 
The Golden Section Search has used the concept of golden ratio (Couriol et al., 1998; 

Hughes, 2011) in narrowing the search interval of a unimodal modal function (Cai et al., 2010; 
Ding et al., 2017; Scherrer et al., 2013; Shao et al., 2014). The unimodal function is a function 
which extremum must lie in the search interval (Akira et al., 2014; Yeom et al., 2010). The 
Golden Section is one of the search techniques (Hughes, 2011) that is derivatives-free (Shao et 
al., 2014; Vieira et al., 2012), robust (Shao et al., 2014) and able to locate the extremum value 
in high speed (Cai et al., 2010; Ding et al., 2017; Scherrer et al., 2013; Shao et al., 2014). Its 
easiness has made it one of the best options for researchers to solve real life problems related 
to optimization. For instance, Scherrer et al. applied the Golden Section Search in optimizing 
the time threshold of a time-out power management policy (Scherrer et al., 2013). Tsai et al. 
used a Golden Section Search to determine a good shape parameter for meshless collocation 
methods(Tsai et al., 2010). Ding et al. proposed the hybridization of the Golden Section Search 
and loss model to enhance the traction system of electric vehicle (Ding et al., 2017). Cai et al. 
used Golden Section Search algorithm in nonlinear isoconversional calculation to determine 
activation energy process (Cai et al., 2010). Akira et al. used Golden Section Search to adjust 
the sensitivity of a tunable antenna (Akira et al., 2014). Su & Qi used Golden Section Search 
to classify the chaotic cloud particle swarm to improve the speed and precision of Available 
Transfer Capability (ATC) optimization (Su & Qi, 2014). 

3. The Double Exponential Smoothing Method 

The double exponential smoothing method is a typical forecasting equation (Feiyan et al., 2012) 
that predicts the future values based on the historical times series data (Shastri, 2015; Wu et al., 
2016). The accuracy of the prediction depends on the parameter, alpha, in the equation (Feiyan 
et al., 2012; Shastri, 2015). The alpha itself is not a variable but an adjustable parameter that 
lies in (0,1) (Singh, 2015; Wu et al., 2016). This means that the practitioner would have to 
determine the appropriate value for this parameter or accuracy of the prediction will be affected 
(Feiyan et al., 2012). The process of parameter selection is needed every time there is an 
acquisition for new sets of time series data. A naïve approach of parameter selection could be 
simply to list all the alpha values which lie in (0,1) and pick the best alpha value based on the 
evaluation of the objective function (Beasley, 1992). However, this approach of complete 
enumeration is inefficient and not practical with enormous choices of alpha in the range 
(Beasley, 1992). In this research, Golden Exponential Smoothing (GES) Model was developed 
by modifying and integrating the conventional exponential smoothing method with the Golden 
Section Search. The GES was built with the intention of solving the problem in parameter 
selection such that parameter could be traced wisely in the algorithm training process. 

4. The Proposed Method 

The procedure of GES is described in Figure 2. In stage 1, the algorithm training process was 
commenced by setting the alpha values with their initial lower bound (L) and upper bound (U) 
that were 0 and 1, respectively. Then, two new alphas values were produced by Eq.(5) based 
on the golden ratio 𝜑 (Eq.(6)). The produced alpha values were checked to see if they satisfied 

(1) 
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the stopping criteria (Eq.(9)). If the stopping criterion was not met, the algorithm training 
process would be executed. Then, the parameters were introduced into the modified exponential 
smoothing equations (Eq.(7)) for simulating the time series data. 

The total deviation of simulated data (Fit+1) and real data (xt+1), the errors, was measured 
by the objective function, Mean Absolute Errors (MAE) (Eq.(8)). The MAEs of two distinct 
parameters were compared to determine either the lower bound (L) or the upper bound (B) 
would be updated. Besides, Mean Absolute Percentage (MAPE) (Eq.(11)) was also used to 
measure the percentage of deviation. Even though MAE was the objective function of the 
algorithm training process, MAPE would be a better option for interpreting the accuracy of the 
GES model. The relative error measurement, MAPE, gives the ultimate user of forecast on 
knowing the percentage of deviation of simulated from the actual. 

The algorithm training process was repeated successively with the purpose of building 
their internal guideline for shrinking the width of lower bound and upper so that it would get 
closer to the optimum alpha value (Scherrer et al., 2013; Shao et al., 2014). The training process 
of stage 1 would be terminated once the stopping criteria (Eq.(9)) that served as the threshold 
has been met. Next, in stage 2, the optimum alpha would be identified (Eq.(10)) from the final 
iteration. This optimum alpha was used in stage 3 (model testing) and stage 4 (usage). In both 
stages, the data were stimulated (Eq.(7)) by using this optimum alpha. These simulated data 
were the desired predictions and they were tested against the real data by using Eq.(8) and 
Eq.(11). 
 
                                                                           𝛼ଵ  = 𝐿 –  𝜑 (𝐿– 𝑈),  𝛼ଶ  = 𝑈 + 𝜑 (𝐿– 𝑈)                                  (5) 

                                                                            𝜑 =
ିଵା√ହ

ଶ
                                (6) 

 
      𝑆௧

ᇱ  = 𝛼 𝑥௧  +  (1– 𝛼)𝑆௧ିଵ
ᇱ , 𝑖 =  1, 2,      𝑡 = 2 … 𝑛 

𝑆௧
ᇱᇱ  = 𝛼  𝑆௧

ᇱ  +  (1– 𝛼)𝑆௧ିଵ
ᇱᇱ  

𝑎௧   = 2𝑆௧
ᇱ  –   𝑆௧

ᇱᇱ 

𝑏௧ =
𝛼

1 − 𝛼

(𝑆௧
ᇱ  –   𝑆௧

ᇱᇱ) 

                                                                                                      𝐹௧ାଵ = 𝑎௧ + 𝑏௧                                                           (7) 

 

                                        𝑀𝐴𝐸ఈ
= ∑

|ிି௫|

ିଶ


௧ୀଶ    ,       𝑖 =  1, 2,      𝑡 = 2 … 𝑛            (8) 

 
                                                          Stopping criteria:|𝛼ଶ − 𝛼ଵ| < ɛ             (9) 

 

                                                                    𝛼 =
(ఈభାఈమ)

ଶ
                                                    (10) 

 

𝑃𝐸௧ =
(𝐹௧ − 𝑥௧)

𝑥௧

(100) 

                                                                    𝑀𝐴𝑃𝐸௧ = ∑
|ா|

ିଶ


௧ୀଶ         (11) 
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Figure 2: Flow chart of GES model 
 

5. Results and Discussion 

The proposed GES model was evaluated and tested by using numerical simulation. Four sets of 
time series data were employed in this study. They were the commodity data that were obtained 
from The World Bank website (http://www.worldbank.org/) which were monthly price of 
chicken (USD/kg), beef (USD/kg), maize (USD/ mt), and coffee (USD/kg) from Jan 1997 to 
Mar 2017. There was a total of 243 observations for each set. As in Figure 3, the first 228 
observations served as an initialization set and were used in the algorithm training process and 
model testing. Eventually, the later 15 observations that were reserved as a test set were used 
to do the comparison study with the prediction. 
 

 

Figure 3: Flow chart of data handling. 
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The results of algorithm training and model testing are illustrated in Figure 4 to Figure 
7. For each figure (4 to 7), Graph (A) represents the converging of two alpha values along the 
algorithm training process. Graph (B) and Graph (C) represent the ability of GES models in 
minimizing MAE and MAPE iteratively. Lastly, Graph (D) represents the time series plot of 
actual versus simulated data with trend line in model testing stage and the errors, MAE and 
MAPE, generated by the optimum alpha of GES models. 

 
 

 
Figure 4: Monthly chicken price (USD/kg): (A) The convergence process of two alpha values along 
training process. (B) The process of minimizing the objective function MAE along training process. 

(C) The process of reducing the percentage deviation MAPE along training process. (D) Actual against 
simulated data with trend line in model testing stage and optimum alpha, MAE, and MAPE. 

 

Since the GES models’ lower bound and upper bound were 0 and 1 respectively, the 
initial two alphas generated by Eq.(5) would be the same for all data sets. However, along the 
algorithm training process, these alphas would be adjusted and corrected through selecting the 
alpha that could minimize the objective function MAE. Each Graph (A) in Figure 4 to Figure 
7 has clearly shown that the patterns of correcting the alphas were different from one to another. 
 
 

 
Figure 5: Monthly beef price (USD/kg): (A) The convergence process of two alpha values along 

training process. (B)The process of minimizing the objective function MAE along training process. (C) 
The process of reducing the percentage deviation MAPE along training process. (D) Actual against 

simulated data with trend line in model testing stage and optimum alpha, MAE, and MAPE. 
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The threshold of the GES model was set to 0.0001 in the experiments. In the algorithm 
training process, this threshold and golden ratio 𝜑 (Eq.(6)) would standardise the process of 
shrinking the width of the interval. Hence, the training process would be terminated at iteration-
18 for all data sets. Nonetheless, this act did not affect the model in identifying the optimum 
alpha. In all the data sets, the alphas took around ten iterations to get closer to the optimum 
value (Figure 4 to Figure 7, Graph (A)), the models took around six iterations to simulate data 
that able to minimize the objective function ultimately (Figure 4 to Figure 7, Graph (B)). The 
other measurement MAPE (Figure 4 to Figure 7, Graph (C)) also shows that the model took 
around six iterations to have a simulated data that minimize the percentage errors. 

 
 

 
Figure 6: Monthly maize price (USD/mt): (A) The convergence process of two alpha values along 

training process. (B)The process of minimizing the objective function MAE along training process. (C) 
The process of reducing the percentage deviation MAPE along training process. (D) Actual against 

simulated data with trend line in model testing stage and optimum alpha, MAE, and MAPE. 
 

The time series plots (Graph (D)) in Figure 4 to Figure 7 show that all the data sets 
consisted of some trend component (the linear line in the time series graph exhibits the trend of 
real price). For chicken data set (Graph (D) in Figure 4) that had trend and little noise, the 
identified optimum alpha was 0.99986 with the objective function MAE of 0.01509 and the 
MAPE was 0.93069%. In Figure 5 (Graph (D)), the beef data set also exhibited trend but it 
fluctuated little more than the chicken data set, the optimum alpha was 0.75566. However, the 
beef data’s MAE value of 0.10166 was lower than the chicken data set, but the MAPE was 
3.41105%.  

From Figure 6 and 7 (Graph (D)), data sets of maize and coffee had more fluctuations. 
Their identified of optimum alpha values were much lower than previous two data sets, but 
their MAPEs were increased. The optimum alpha of maize was 0.62421 with MAE of 8.33478 
and the MAPE was 5.07720%. The highest value of MAPE was found in the coffee data set 
with 5.49284%, the optimum alpha and MAE of this data were 0.57769 and 0.16737 
respectively (Graph (D) in Figure 7). Nonetheless, the overall performance of the GES models 
was considered excellent in the model testing stage since the MAPE of all data sets were less 
than 6%. 
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Figure 7: Monthly coffee price (USD/kg): (A) The convergence process of two alpha values along 

training process. (B)The process of minimizing the objective function MAE along training process. (C) 
The process of reducing the percentage deviation MAPE along training process. (D) Actual against 

simulated data with trend line in model testing stage and optimum alpha, MAE, and MAPE. 
 
 

Table 1: Analysis of Errors for test set (Usage). 
 
 
 
 
 
 
 
 
 

After the model testing stage, the identified optimum alphas were used for testing the 
reserved test sets so that the accuracy of predicted data against real data was verified. The 
accuracy of GES models was again checked by using the analysis of errors. In Table 1, the 
percentages of deviation show that GES models have demonstrated great ability in forecasting. 
The pre-identified optimum alphas from the model testing stage were able to continue their 
legends in model usage stage. None of these percentages of deviation (MAPE) were found more 
than 5%. Hence, it shows that these optimum alphas were able to make prediction close to the 
real data. The lowest percentage of deviation was found in chicken data test set with 0.83374%. 
Then, it was followed by beef with 2.519718%. The third was the coffee data set with a 
percentage deviation of 3.89231%. Lastly, the highest MAPE was Maize data test set with 
4.27514%. The results show that the pre-identified optimum alphas were able to preserve their 
good records in forecasting. 

6. Conclusion 

The numerical simulations have shown that the proposed GES model provides favourable result 
in searching the optimum alpha and making predictions. The predefined threshold value might 
limit the iterations of the algorithm training process but the self-corrective and fast converging 
nature of the model made the optimum alpha able to be traced within iterations. 

In these four sets of time series data that comprised of trend components, the value of 
alpha was close to one when the data exhibited little noise (fluctuation). The value of alpha was 
reduced when the fluctuation of time series data increased. The effectiveness of the GES model 
in making a prediction in the stage of model testing and model usage also depends on the 

 Chicken Beef Maize Coffee 

Alpha 0.99904 0.75566 0.62421 0.57769 

MAE 0.02077 0.10078 6.81041 0.14051 

MAPE 0.83374% 2.51978% 4.27514% 3.89231% 
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amount of noise in the data set. The accuracy of prediction was high when there was little noise 
but it was slightly defective when the fluctuation increased. Nevertheless, the deviation of 
predicted data from actual data was still in the range of excellence since the MAPEs were less 
than 6%. For future work, the researcher may work on adaptive optimum alpha whereby the 
value might be adjusted by small increments from time to time basis so that the accuracy of the 
model would further increase. 
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