
Malaysian Journal of Computing, 5 (1): 403-413, 2020
Copyright © UiTM Press
eISSN: 2600-8238 online

403

This open access article is distributed under a Creative Commons Attribution (CC-BY SA) 3.0 license

A STEP-LENGTH FORMULA FOR

CONJUGATE GRADIENT METHODS

Adam Ajimoti Ishaq
1
, Tolulope Latunde

2
 and Kazeem Babatunde Akande

3

Department of Physical Sciences, Al-Hikmah University, Ilorin, Nigeria

Department of Mathematics, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria

Department of Science and Research, Iqra College, Ilorin, Nigeria
1aaishaq@alhikmah.edu.ng, 2tolulope.latunde@fuoye.edu.ng, 3akande.kb22002@gmail.com

ABSTRACT

A newly step-length formula is proposed for implementing conjugate gradient methods’

algorithm to solve unconstrained optimization problems. The unified formula for obtaining
step-length does not involve any matrix operation. Numerical results obtained are graphically

illustrated using performance profiling software. This showed that the new formula performs

efficiently in terms of computational efforts and execution time compared with some existing
formulae for obtaining the step-length without line search procedures.

Keywords: Step-length, conjugate gradient method, unconstrained optimization problem.

Received for review: 23-01-2020; Published: 30-04-2020

1. Introduction

We consider the conjugate gradient method (CGM) for the unconstrained optimization problem

minf(x),x∈Rn, (1)

where f is continuously differentiable and a real-valued function. The CGM constitutes an

active choice for efficiently solving (1), particularly when the dimension n is very large, due to

its simplicity analysis, very low memory requirement, fast convergence and its splendid

numerical performance, for engineers and mathematicians (Jinhong & Genjiao, 2013). It uses

the following iterative plot of the form:

x(k+1)=x(k)+αkd
(k)

, (2)

where, x(k) is the present iterative point, αk>0, the step-length which can be carried out by

various step-length rules and d
(k)

 is the search direction calculated by:

d
(k)

= {
-g(k)+β

(k)
d

(k-1)
;k≥1

-g(k); k=0
, (3)

where g(k)=∇f(x(k)) and β
k
 is the CG update parameter which decides the distinctive CGMs

which in turn lead to very assorted computational efficiency and convergence results of the

comparing methods (Zhang, 2010). The following are some well-known CG update parameters:

mailto:1aaishaq@alhikmah.edu.ng
mailto:2tolulope.latunde@fuoye.edu.ng
mailto:3akande.kb22002@gmail.com

Ishaq et. al., Malaysian Journal of Computing, 5 (1): 403-413, 2020

404

β
k

FR
=

‖g(k+1)‖
2

‖g(k)‖
2 , Fletcher & Reeves (1964)[FR] (4)

β
k

PRP
=

g(k+1)Ty(k)

‖g(k)‖
2 , Polak & Ribiere (1969)[PRP] (5)

 β
k

HS
=

g(k+1)TY(k)

g(k)Tg(k)
, Hestenes & Stiefel (1952)[HS] (6)

β
k

CD
=-

‖g(k+1)‖
2

g(k)Td
(k) , Fletcher (1987)[CD] (7)

 β
k

DY
=

‖g(k+1)‖
2

y(k)Td
(k) , Dai & Yuan (2000)[DY] (8)

β
k

LS
=-

g(k+1)Ty(k)

g(k)Td
(k) , Liu & Storey (1992)[LS] (9)

 β
k

BAN
=

g(k+1)Ty(k)

g(k)Ty(k)
, Bamigbola et al. (2010)[BAN] (10)

β
k

HZ
= (y(k)-2d

(k) ‖y(k)‖
2

y(k)Td
(k))

(T)
g(k+1)Td

(k)

y(k)Td
(k) , Hager & Zhang (2005)[HZ], (11)

 where y(k)=(g(k+1)-g(k)).

The success of an optimization method in the iterative scheme given in (2) depends

largely on the accuracy of computing d
(k)

 and αk.

In performing the iterative scheme in (2), various methods were applied to determine the

step-length, one of such methods is the line search techniques. On the other hand, a fixed

formula can also be used to obtain the step-length that is simply called step-length with no line
search procedure (Sun & Zhang, 2001). But the line search schemes need many evaluations of

some function and gradient expressions, thus reducing the numerical efficiency of CGMs in

large-scale optimization problems (Zhang, 2010). Sun & Zhang (2001) developed a CGM
where the step-length is computed by a formula in their method instead of a line search scheme.

The following is their formula:

 αk=
-δg(k)d

(k)

‖d
(k)‖

Q(k)

2 , (12)

where ‖d
(k)‖

Q(k)

=√d
(k)T

Q
(k)

d
(k)

 δ∈ (0,
Vmin

τ
), τ is a Lipschitz constant of the function f and

{Q
(k)

} is a sequence of positive definite matrices satisfying the positive constant Vmin and Vmax

such that

 Vmind
T
d≤d

T
Q

(k)
d≤Vmaxd

T
d,d∈Rn. (13)

Ishaq et. al., Malaysian Journal of Computing, 5 (1): 403-413, 2020

405

 But the formula presented in (13) involves {Q
(k)

}, and this may take a toll extra memory

space and execution time amid the numerical experiments for large-scale optimization issues.

Wu (2011), later derived a formula for the step-length that is matrix-free by updating the

formula in (13) using the quasi-Newton methods in Zhang et al., (1999), and the formula is

presented as

 αk=
-δg(k)Td

(k)

(g̅(k+1)+g(k))
T

d
(k)

+γθk

 , (14)

where θk=6(f
(k)

-f̅
(k+1)

)+3(g(k)-g̅(k+1))
T
d

(k)
, δ and γ are parameter satisfying, δ∈(0,

K

τ
) and γ≥0 if

τ=K.

Ajimoti & Bamigbola (2016) derived a step-size formula that uses only gradient

information to obtain the step-length in the iterative scheme (2) and the formula is given as

 αk=
-δg(k)Td

(k)

(g̅(k+1)-g(k))
T

d
(k) ,δ∈ (0,

τ

λ
) . (15)

 In this work, the idea of enhancing the line search procedure is undertaking by

prescribing a new step-length rule without a line search for CGMs involving both function and

gradient information. The rest of the paper is constituted as follows. In Section 2, the derivation

of the new formula is presented. In Section 3, numerical results illustrating the efficiency of the
proposed formula and comparing its performance with two existing formulae using some

CGMs were reported, thereafter, the conclusion was drawn in Section 4.

2. The New Step-length Formula

In this section, the new step-length formula is presented. The following assumptions which are

commonly used in the literature on function f are required.

Assumption 2.1:

i. The level set L={x∈Rn|f(x)≤f(x(1)), with x(1) to be the current or starting point of the iterative

method (2) is bounded.

ii. The objective function f(x) is Lipschitz continuous and differentiable function and strongly

convex in ℜ𝑛, i.e., ∃ 𝜆 > 0 and 𝜏 ≥ 0 such that,

 ‖g(k+1)-g(k)‖≤λ‖x(k+1)-x(k)‖ (16)

 and

 (g(k+1)-g(k))
T
(x(k+1)-x(k)|≥τ‖x(k+1)-x(k)‖

2
. (17)

Lemma 2.1:

Suppose that Assumption 2.1 hold. Then,

 τ‖d
(k)‖

2
≤f̅

(k+1)
-2f

(k)
+f̅

(k-1)
≤2λ‖d

(k)‖
2
 (18)

Ishaq et. al., Malaysian Journal of Computing, 5 (1): 403-413, 2020

406

holds for all k.

Proof:

Note that f
(k)

, f̅
(k+1)

 and f̅
(k-1)

 denote f(x(k)), f(x(k)+d
(k)

) and f(x(k)-d
(k)

). Hence, the proof is

straight forward by adopting (16) and (17).

Now we present the derivation of the step-length formula that uses available information on

both function and gradient.

Iterative scheme (2) gives

 αkd
(k)

=x(k+1)-x(k) (19)

put (19) in (16), then we have,

 ‖g(k+1)-g(k)‖≤λ|αk|‖d
(k)‖ (20)

 (g(k+1)-g(k))
T
d

(k)
≤‖g(k+1)-g(k)‖‖d

(k)‖≤λαk‖d
(k)‖

2
 (21)

 ⇒ (g(k+1)-g(k))
T
d

(k)
≤λαk‖d

(k)‖
2
 . (22)

Using conjugacy property, i.e., g(k+1))
T
d

(k)
=0, then (22) becomes

-g(k)Td
(k)

≤λαk‖d
(k)‖

2

 ⇒
-g(k)Td

(k)

λαk
≤‖d

(k)‖
2
 . (23)

From Lemma 2.1, this results to

 ‖d
(k)‖

2
≤

(f ̅
(k+1)

-2f
(k)

+f ̅
(k-1)

)

τ
 (24)

and combining (23) and (24), we have

 -τg(k)Td
(k)

≤λαk(f̅
(k+1)

-2f
(k)

+f̅
(k-1)

)

⇒ λαk(f̅
(k+1)

-2f
(k)

+f̅
(k-1)

)≥-τg(k)Td
(k)

⇒ αk≥-
τg(k)Td

(k)

λ(f ̅
(k+1)

-2f
(k)

+f ̅
(k-1)

)
.

Using the Sun & Zhang (2001) approach, we have

 αk=-
μg(k)Td

(k)

(f ̅
(k+1)

-2f
(k)

+f ̅
(k-1)

)
 . (25)

Ishaq et. al., Malaysian Journal of Computing, 5 (1): 403-413, 2020

407

3. Computational Consideration

3.1 Algorithm: CGM Algorithm

Step 1: Select the initial point, x(0)∈Rn, ϵ≥0 (a small number called tolerance) and set

d
(0)

=-g(0)=-∇f(x(0)),k=0.

Step 2: Terminate process if ||g(0)||≤ϵ, else, go to the Next Step.

Step 3: Compute step length αk by:

Step 3a: Using a fixed formula in (14).

Step 3b: Using a fixed formula in (15).

Step 3c: Using a fixed formula in (25).

Step 4: Set x(k+1)=x(k)+αkd
(k)

; if ||g(k+1)||≤ϵ, then stop, else, go to the Next Step.

Step 5: Compute d
(k+1)

=-g(k+1)+β
k
d

(k)
, where β

k
 is given by equation (4-12).

Step 6: Set k=k+1, and go to Step 3.

3.2 Numerical Comparison

The numerical experiments carried out in this work incorporated with fixed formulae in (14),

(15) and (25) into the CGM Algorithm 3.1. We aim to perform an experiment that aid in

measuring the effectiveness of obtaining the step-length αk using a fixed formula rather than
any line search procedures. The newly derived formula for finding step-length was compared

with some existing fixed formulae by using nine kinds of conjugate gradient methods to solve

thirty unconstrained optimization test functions obtained from the CUTE collection made
available by Andrei (2008) and Jamil & Yang (2013) with standard starting points and each test

function is given with two different dimensions (n=5,000 and n=10,000). The CGM Algorithm

3.1 was implemented via Matlab 8.0 version and run on a PC HP EliteBook 6930p with 2.00GB

RAM, 2.20GHZ processor and 3.4 windows experience index operating system. In Figures 1-6,
we adopt the performance profiles introduced by Dolan & More (2002) to evaluate and compare

the performance of different kinds of CGM against various rules of obtaining the step size αk,

to test the efficiency of these methods using optimization software based on the CPU time and
the number of iteration where NSF (formula presented in (25)) represents new step-length

formula, ESF1 (formula presented in (14)) represents existing step-length formula one and

ESF2 (formula presented in (15)) represents existing step-length formula two. A table

containing the test functions and their sources is presented in Table 1 and their numerical results

are graphically illustrated in Figures 1-6.

Table 1. A list of Test Problems

S/N PROBLEM SOURCE

1 Extended Rosenbrock Function (Andrei, 2008)

2 Linear Function - rank 1 (Andrei, 2008)

3 Quadratic Diagonal Perturbed Function (Andrei, 2008)

4 Perturbed Quadratic Function (Andrei, 2008)

Ishaq et. al., Malaysian Journal of Computing, 5 (1): 403-413, 2020

408

5 Quadratic QF1 Function (Andrei, 2008)

6 ARGLINB(m=20) Function (Andrei, 2008)

7 Almost Perturbed Quadratic Function (Andrei, 2008)

8 Extended White & Holst Function (Andrei, 2008)

9 Raydan 1 Function (Andrei, 2008)

10 Raydan 2 Function (Andrei, 2008)

11 Extended Three Exponential Terms Function (Andrei, 2008)

12 Generalized Rosenbrock Function (Andrei, 2008)

13 Generalized White & Holst Function (Andrei, 2008)

14 Extended Block Diagonal BD1 Function (Andrei, 2008)

15 HimmelBG Function (Andrei, 2008)

16 Power Function (Andrei, 2008)

17 Extended Dixon and Price (Andrei, 2008)

18 Extended Booth Function (Andrei, 2008)

19 Extended Boh2 Function (Andrei, 2008)

20 Diagonal 3 Function (Jamil & Yang, 2013)

21 Hager Function (Jamil & Yang, 2013)

22 Extended Penalty Function (Andrei, 2008)

23 Extended Cliff & Roth Function (Andrei, 2008)

24 Extended Quadratic Penalty QP1 Function (Andrei, 2008)

25 Extended EP1 Function (Andrei, 2008)

26 ARWHEAD Function (Andrei, 2008)

27 Extended Freudenstein & Roth Function (Andrei, 2008)

28 Cube Function (Andrei, 2008)

29 Extended Goldstein & Price Function (Andrei, 2008)

30 Chebyquad Function (Andrei, 2008)

Figure 1. Performance profile for various CGMs by ESF1 based on CPU time

Ishaq et. al., Malaysian Journal of Computing, 5 (1): 403-413, 2020

409

Figure 2. Performance profile for various CGMs by ESF1 based on number of iterations

Figure 3. Performance profile for various CGMs by ESF2 based by CPU time

Ishaq et. al., Malaysian Journal of Computing, 5 (1): 403-413, 2020

410

Figure 4. Performance profile for various CGMs by ESF2 by the number of iterations

Figure 5. Performance profile various CGMs by NSF based by CPU time

Ishaq et. al., Malaysian Journal of Computing, 5 (1): 403-413, 2020

411

Figure 6. Performance profile for various CGMs by NSF by the number of iterations

3.3 Discussion on Numerical Results

For better description and understanding of the Figures 1-6 above, the solvability measure

considering the number of iteration and the execution time for the step-length formulae (SLF)

used in this work are presented below in Table 2 based on the number of successes and failures
in percentage recorded by each CGM:

Table 2. Percentage Solvability Index for Different SLFs by CGMs

SSR Solvability

Index

CG Methods Average

Success/Failure BAN FR PRP HS CD DY LS HZ GSC

ESF1 Success 88 58 50 84 88 80 52 70 82 72.4

Failure 12 42 50 16 12 20 48 30 28 27.6

ESF2 Success 100 67 67 96 100 96 67 93 94 86.7

Failure 00 33 33 04 00 04 33 07 06 13.3

NSF Success 94 89 82 89 100 94 92 96 94 92.2

Failure 06 11 18 11 00 06 08 04 06 7.8

Table 2 which measures the effectiveness of each CGM and the various SLFs presented

in our work. The newly derived formula NSF displaced efficient performance over ESF1and
ESF2 considering the number of iteration and the execution time taken in solving each of the

thirty test functions using nine distinctive CGMs. It is observed that almost all the CG methods

considered attained the highest level of efficiency using the newly derived formula, and it is

evident to finalize that NSF showed better efficient performance displaced over ESF2 and ESF1
judged by the calculated average as presented in Table 2 above.

4. Conclusion

In this work, nine kinds of CG methods namely BAN, FR, PRP, HS, CD, DY, LS, HZ and GSC

CG methods were employed in solving thirty unconstrained optimization test functions with
two different dimensions (5000 and 10000) using the newly derived formula to obtain the step-

Ishaq et. al., Malaysian Journal of Computing, 5 (1): 403-413, 2020

412

length. To test the efficiency of the new step-length formula, it was assessed and compared with

already existing formulae numerically. To better investigate our observations, performance

profiling software is employed to plot the performance profiles of the different methods and
afterward presented our report. It is also established that the BAN CGM and CD method exhibit

better efficiency computationally when compared to the other CGMs mentioned in this research

work.

References

Ajimoti, A. & Bamigbola, O. M. (2016). A gradient based step-size rule for conjugate gradient

methods. Proceeding of 35th Annual Conference of the Nigerian Mathematical Society, (pp

150-194) NMS.

Andrei, N. (2008). Unconstrained optimization test functions unpublished manuscript.

Advanced Modeling and Optimization, 10, 147-161.

Bamigbola, O. M., Ali, M. M., & Nwaeze, E. (2010). An efficient and convergent method for

unconstrained nonlinear optimization. A paper presented at the International Congress of
Mathematicians, Hyderabad, India.

Dai, Y. & Yuan, Y. (2000). A nonlinear conjugate gradient with strong global convergence

properties. SIAM Journal on optimization, 10, 177-182.

Dolan, E. O. & More, J. J. (2002). Benchmarking optimization software with performance

profiles. Mathematical programming, 19, 201-213.

Fletcher, R. (1987). Practical method of Optimization. John Wiley, New York., 2nd edition.

Fletcher, R. & Reeves, C. M. (1964). Function minimization by conjugate gradients. Computer

Journal, 7, 149-154.

Hager, W. W. & Zhang, H. (2005). A new conjugate gradient method with guaranteed descent
and an efficient line search. SIAM Journal on Optimization, 16, 170-172.

Hestenes, M. R. & Stiefel, E. (1952). Methods of conjugate gradient for solving linear
equations. J. Res. Nat. Bur. Stand., 49, 409-436.

Jamil, M. & Yang, X. (2013). A literature survey of benchmark functions for global

optimisation problems. International Journal of Mathematical Modeling and Numerical
Optimisation, 4(2), 150-194.

Jinhong, H. & Genjiao, Z. (2013). A conjugate gradient method without line search and the
convergence analysis. Fourth International Conference on Emerging Intelligent Data and

Web Technologies (pp 37-86).

Liu, Y. & Storey, C. (1992). Efficient generalized conjugate gradient algorithms. Journal of

Optimization Theory and Application, 69, 129-137.

Polak, E. & Ribiere, G. (1969). Note sur la convergence de directions conjugees. Rev. Francaise
Informat Recherche Operationelle, 16,35-43.

Ishaq et. al., Malaysian Journal of Computing, 5 (1): 403-413, 2020

413

Sun, J. & Zhang, J. (2001). Global convergence of conjugate gradient methods without line

search. Journal of Annals of Operation Research, 103, 161-173.

Wu, A. (2011). A nonlinear conjugate gradient method without line search. International

Conference on Computation and Information Sciences, 4(2)150-194.

Zhang, B. (2010). Convergence of modified conjugate gradient methods without line search.

Second International Conference on Computational Intelligence and Natural Computing

(CINC).

Zhang, J. Z., Deng, N. Y., & Chen, L. H. (1999). A new quasi-newton equation and related

methods for unconstrained optimization. Journal of Optimization and Applications, 102,

147-167.

