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ABSTRACT 

Reinfection of a recovered individual either as a result of relapse or new contact no doubt poses 

a major threat to the eradication of an infection within the host community. In this work, the 

role of re-infection in the transmission dynamics of COVID-19 was considered and analysed 

using the semi-analytical tool Differential Transform Method (DTM). COVID-19 (also known 

as Coronavirus) has shut down the economy of the world since it became a global pandemic. 

A mathematical model was constructed with consideration of multiple pathways of infection 

transmission, the treatment strategies and policies adopted (social distancing, wearing of face 

mask and so on) to limit the spread of the infection globally. The non-linear system of equations 

governing the model was solved using DTM and the resulting series solution was compared 

with the standard numeric Runge-Kutta order 4 (RK4). It was discovered that re-integration of 

a recovered individual into the susceptible community without observing the prevention 

guidelines such as social distancing, washing of hands and proper sanitizing could increase 

the spread of the infection since the recovered individuals are not guaranteed of immunity 

against the infection after recovery. The study concluded that families of recovered patients 

must ensure adequate preventive measure while integrating their recovered loved ones back to 

their midst. 
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1. Introduction 

COVID-19 (Coronavirus disease) is a viral infection that causes mild to moderate respiratory 

illness, which may also lead to serious illness in the body of an infected individual with 

underlying health problem (WHO, 2020a). It has several transmission pathways but transmits 

primarily through droplets (discharge while sneezing and/or coughing) from an infected 

individual. Like other viral infections, the disease is highly contagious even at an asymptomatic 

stage. From the time of contact with the virus, it has an incubation period of 1 – 14 days within 

the host and it was declared a world pandemic by the World Health Organization on January 

30, 2020 (WHO, 2020a). Globally, the total number of confirmed cases of this infection is 

7,805,148 with total death due to COVID-19 related issues is at 431,192 as of 15th June, 2020. 

It was also reported that America has the largest number of cases of infection and fatality from 

the disease (WHO, 2020a). Furthermore, it was reported that it took 98 days for Africa as a 

continent to report its first one hundred thousand cases whereas the next hundred thousand 
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cases were reported in just 18 days (WHO, 2020b).  This shows that the spreading rate of the 

disease in these developing countries is alarming compared with developed countries which 

have started recording lower cases. 

The recurrence of an infection is considered as the second phase that arises after the 

patient was treated and cured (Portal, 2014). This recurrence can occur either as a result of 

reinfection or relapse. Reinfection is defined as a second infection of a body (or an organ) by 

the same agent (or a different agent/strain) while relapse is defined as “insufficient” cure of the 

first episode of an infection (Portal, 2014). The role of reinfection in the transmission dynamics 

of COVID-19 shall be discussed in this work. What accounts for the rapid one hundred 

thousand new cases in just 18 days in Africa is not a result of newly imported cases since 

borders have been closed, but it is due to contact already made within the population by the 

infected as well as contact made with relapsed and re-infected individuals. Thus, the aim of this 

research work is to analyze the impact of relapse and reinfection on the transmission dynamics 

of COVID-19 especially in a developing country like Nigeria. This is to ascertain the necessary 

steps to take in order to stop the further spread of the infection within the population while also 

looking for effective and efficient ways of maintaining immunity for the recovered. To achieve 

this aim, a mathematical model for the transmission dynamics of the infection was developed 

and solved using Differential Transform Method (DTM) to obtain the semi-analytic solution 

(in time dependent series form). The result obtained from the above method is graphically 

compared with Runge-Kutta order 4 method and tables of approximate result was also 

presented. 

Mathematical modeling is an applied branch of mathematics that deals with representing, 

analyzing and evaluating physical (biological, economical, ecological etc.) problems using 

mathematical equations (arithmetic, difference and differential equation) with the purpose of 

interpreting the outcome of the analyses to proffer solution(s) to the problem. The most 

elementary model developed is the Susceptible-Infected-Recovered (SIR) model where human 

population is sub-divided into three epidemiological classes (also called compartments). This 

model was developed by Kermack and McKendrick (1927) and has been widely studied and 

analyzed by mathematical epidemiologist (Akinyemi et al., 2016). Since then, several 

modifications and extensions to their model have been developed to suit the dynamics of the 

disease under consideration. Alqahtani (2021) adopted the fractional-order SIR model to study 

COVID-19 dynamics and obtained the stability analysis, bifurcation and numerical simulation 

of the model.  Ivorra et al. (2020) developed a new θ-SEIHRD model which takes into account 

the known special characteristics of this disease, such as the existence of infectious undetected 

cases and the different sanitary and infectiousness conditions of hospitalized people. Thus, in 

this work, a new SI1I2QRM non-linear deterministic model for the transmission dynamics of 

COVID-19 infection is proposed. The model was developed with consideration of intervention 

mechanisms such as social distancing, proper sensitization and quarantine as a preventive 

means of reducing secondary infection. The effect of asymptomatic carrier of the disease on 

the overall new cases is investigated as well as the effect of immunity loss and relapse.   

2. Material and Methods 

It is important to state here that deterministic mathematical model was used in this study. This 

is to enable adequate analysis of the non-linear nature of physical problems being formulated. 

Also, it is easy to interpret the result to other agencies that are not-mathematically inclined, as 

they will use the result of the analysis to make decisions on what best practices to employ in 

eliminating the virus. Furthermore, this study relies on data obtained majorly from WHO 

website and other recent data from literature. 

A non-linear mathematical model was formulated by dividing the total human population 

at time t, denoted by N(t) into six disjoint epidemiological sub-populations, which are, 
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Susceptible (S), Asymptomatic-Infected (I1), Symptomatic-Infected (I2), Quarantine (Q), 

Recovered (R) and Partial Immunity (M). Thus, at any time (t), the total human population is: 

N(t)=S(t)+I1(t)+I2(t)+Q(t)+R(t)+M(t)                                                

 

Each epidemiological sub-populations of the model accept the inflow and outflow of 

human population as a result of several factors like birth, death, contact with the disease, 

treatment, death caused by infection, relapse, reinfection and so on. Greek letters were used to 

denote the passage rate of human from one compartment to another, for instance,  denote the 

recruitment into susceptible class,  is the natural mortality rate,  is the force of infection 

which denotes the rate at which uninfected individual becomes infected and it depends on so 

many factors. One of those factors include contact with people infected ( ). Table 1 shows the 

definition of the parameters used in the model together with the numerical values used to solve 

the series solution of DTM. The system of equations governing the model is given as: 

𝑑𝑆

𝑑𝑡
= 𝜋 + 𝛾𝑀 − 𝜆𝑆 − 𝜇𝑆 

 

(1) 

𝑑𝐼1

𝑑𝑡
= 𝜀𝜆𝑆 + 𝜃1𝑅 + 𝜔2𝐼2 − (𝜇 + 𝜔1 + 𝜙1)𝐼1 

𝑑𝐼2

𝑑𝑡
= (1 − 𝜀)𝜆𝑆 + 𝜃2𝑅 + 𝜔1𝐼1 − (𝜇 + 𝜔2 + 𝜙2 + 𝛿1)𝐼2 

𝑑𝑄

𝑑𝑡
= 𝜙

1
𝐼1 + 𝜙2𝐼2 − (𝜇 + 𝛿2 + 𝜂)𝑄 

𝑑𝑅

𝑑𝑡
= 𝜂𝑄 − (𝜇 + 𝜃1 + 𝜃2 + 𝛼)𝑅 

𝑑𝑀

𝑑𝑡
= 𝛼𝑅 − (𝛾 + 𝜇) 

where the force of infection is given as: 

𝜆 = 𝛽1𝐼1 + 𝛽2𝐼2 + 𝛽3𝑄 (2) 

Table 1. Table Parameter Definition and Values. 

Symbol Meaning Value used Source of value 

π Recruitment rate 𝜇 × 105 (Okuonghae, 2013) 

λ Force of infection Estimated Estimated 

ε Education parameter (hand 

sanitizing, social distancing etc.) 

0.0975 (NCDC, 2020) 

μ Natural mortality rate 0.02041 (Okuonghae, 2013) 

ϒ Immunity loss after recovery with 

reinfection possibility 

0.04 Assumed 

α Partial immunity obtained from 

effective treatment 

0.05 Assumed 

η Recovery rate 0.01958 (NCDC, 2020) 

𝛽𝑖 , 𝑖 = 1,2,3 Contact rate with I1, I2 and Q classes 

respectively 

[0, 0.75] (Ivorraa, et al., 2020) 

𝛿𝑖 , 𝑖 = 1,2 Fatality case for I2 and Q classes 

respectively 

[0.01, 0.02] (Ivorraa, et al., 2020) 

𝜙𝑖 , 𝑖 = 1,2 Rate of quarantine of detected cases [0.15, 1.43] (Ivorraa, et al., 2020) 
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3. Theory/ Calculations 

Differential transform method shall be used to obtain the series solution of the system of 

equations governing the model formulated. This is a semi-analytical method that transforms 

system of linear or non-linear differential equations into an infinite time dependent series so 

that an approximate solution for the differential equation is obtained. Table 1 of Akinboro et 

al. (2014) gives some fundamental operations on differential transformation method and it shall 

be adopted to transform the system of Eq. (1) into its DTM equivalent. Thus, for finite step k, 

the system of Eq. (1) can be written as Eq. (3): 

𝑆(𝑘 + 1 =

1

𝑘+1
[
[𝜋 ⋅ 𝛿(𝑘, 0) + 𝛾𝑀(𝑘) − 𝛽1∑ 𝑆(𝑖)𝐼1(𝑘 − 𝑖)

𝑘
𝑖=0 − 𝛽2∑ 𝑆(𝑖)𝐼2(𝑘 − 𝑖)

𝑘
𝑖=0 ]

−𝛽3∑ 𝑆(𝑖)𝑄(𝑘 − 𝑖)𝑘
𝑖=0 − 𝜇𝑆(𝑘)    

]  

 

(3) 

𝐼1(𝑘 + 1) =

1

𝑘+1
[
𝜀(𝛽1∑ 𝑆(𝑖)𝐼1(𝑘 − 𝑖)

𝑘
𝑖=0 + 𝛽2∑ 𝑆(𝑖)𝐼2(𝑘 − 𝑖)

𝑘
𝑖=0 + 𝛽3∑ 𝑆(𝑖)𝑄(𝑘 − 𝑖)𝑘

𝑖=0 )

+𝜃1𝑅(𝑘) + 𝜔2𝐼2(𝑘) − (𝜇 + 𝜔1 + 𝜙1)𝐼1(𝑘)
]  

𝐼1(𝑘 + 1 =

1

𝑘+1
[
𝜀(𝛽1∑ 𝑆(𝑖)𝐼1(𝑘 − 𝑖)

𝑘
𝑖=0 + 𝛽2∑ 𝑆(𝑖)𝐼2(𝑘 − 𝑖)

𝑘
𝑖=0 + 𝛽3∑ 𝑆(𝑖)𝑄(𝑘 − 𝑖)𝑘

𝑖=0 )

+𝜃1𝑅(𝑘) + 𝜔2𝐼2(𝑘) − (𝜇 + 𝜔1 + 𝜙1)𝐼1(𝑘)
]  

𝐼1(𝑘 + 1)

=
1

𝑘 + 1

[
 
 
 
𝜀 (𝛽1∑𝑆(𝑖)𝐼1(𝑘 − 𝑖)

𝑘

𝑖=0

+ 𝛽2∑𝑆(𝑖)𝐼2(𝑘 − 𝑖)

𝑘

𝑖=0

+ 𝛽3∑𝑆(𝑖)𝑄(𝑘 − 𝑖)

𝑘

𝑖=0

)

+𝜃1𝑅(𝑘) + 𝜔2𝐼2(𝑘) − (𝜇 + 𝜔1 + 𝜙1)𝐼1(𝑘) ]
 
 
 

 

𝑅(𝑘 + 1) =
1

𝑘 + 1
[𝜂𝑄(𝑘) − (𝜇 + 𝜃1 + 𝜃2 + 𝛼)𝑅(𝑘)] 

𝑀(𝑘 + 1) =
1

𝑘 + 1
[𝛼𝑅(𝑘) − (𝛾 + 𝜇)𝑀(𝑘)] 

 

𝜃𝑖, 𝑖 = 1,2 Relapse rate to I1 and I2 classes 

respectively 

[0.01, 0.08] (Ivorraa, et al., 2020) 

𝜔1 Deterioration rate of I1 0.18 (Ivorraa, et al., 2020) 

𝜔2 Improvement rate of I2 classes due to 

personal hygiene 

[0.08, 0.14] (Ivorraa, et al., 2020) 

S(t) Susceptible sub-population Varied State Variable 

I1(t) Asymptomatic (Carrier) sub-

population 

Varied State Variable 

I2(t) Symptomatic sub-population Varied State Variable 

Q(t) Quarantine sub-population Varied State Variable 

R(t) Recovered sub-population Varied State Variable 

M(t) Recovered with partial immunity 

sub-population 

Varied State Variable 
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 An initial population of 10,550 was used for analysis in this work and was distributed 

into each compartment as follows: S(0)=10,250, I1(0)=100, I2(0)=60, Q(0)= 60, R(0)= 50 and 

M(0)=30. The initial conditions together with the value of parameter in Table 1 was used to 

iterate Eq. (2) to obtain the series solution given in Eq. (4) below: 

𝑆(𝑡) = 10250 +
1719.39400𝑡-59.89529345t2-8.963911503t3-2.095788193t4-.3008733754t5 +

ℎ. 𝑜. 𝑡  

 

(4) 

𝐼1(𝑡) =
100-58.94925000t+60.02903380t2-20.77850350t3+7.933624672t4-1.932203854t5 + ℎ. 𝑜. 𝑡  

𝐼1(𝑡) =
100-58.94925000t+60.02903380t2-20.77850350t3+7.933624672t4-1.932203854t5 +

ℎ. 𝑜. 𝑡  

𝑄(𝑡) =
60+167.45540t-41.88881676t2+28.81151164t3-5.992018388t4+1.753659319t5 +

ℎ. 𝑜. 𝑡  

𝑅(𝑡) =
50-20.52050t+13.81490920t2-3.838815887t3+1.229324375t4-0.2502495560 t5 +

ℎ. 𝑜. 𝑡  

𝑀(𝑡) =
30+1.97950 t-0.4062032975t2+0.1823107517t3-0.03799468025t4+0.009733790400t5 +

ℎ. 𝑜. 𝑡  
 

where h.o.t. denotes higher order terms in the series. 

4. Numerical Solution of the Model by Runge-Kutta Fourth Order (RK4) 

 

The system of equation in Eq. (1) was solved numerically using the fourth order of Runge-

Kutta method. This method is widely accepted as a numerical scheme with greater accuracy 

and it is also easy to use. The method was postulated by German Mathematician Carl Runge 

(1856 – 1927) and German Engineer Wilhelm Kutta (1867 – 1944). The method has been 

widely used to solve both linear and non-linear mathematical problems. Side et al. (2018) used 

the method to solve SIR tuberculosis model. The scheme is of the form: 

𝑦𝑟+1 = 𝑦𝑟 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)                                                         (5)  

such that: 

𝑘1 = ℎ𝑓(𝑥𝑟, 𝑦𝑟)                         

𝑘2 = ℎ𝑓 (𝑥𝑟 +
1

2
ℎ, 𝑦𝑟 +

1

2
𝑘1)

𝑘3 = ℎ𝑓 (𝑥𝑟 +
1

2
ℎ, 𝑦𝑟 +

1

2
𝑘2)

𝑘4 = ℎ𝑓(𝑥𝑟 + ℎ, 𝑦𝑟 + 𝑘3)        

                            

}
 
 

 
 

                                        (6)  

 

where ℎ denotes the step length; 𝑥𝑟  and 𝑦𝑟  are the initial conditions for both the independent 

and dependent variable respectively. It is sufficed to re-write Eq. (1) in standard form as: 
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𝑑𝑆

𝑑𝑡
= 𝑔1(𝑡, 𝑆, 𝐼1, 𝐼2, 𝑄, 𝑅,𝑀) = 𝜋 + 𝛾𝑀 − 𝜆𝑆 − 𝜇𝑆                                                         

𝑑𝐼1

𝑑𝑡
= 𝑔2(𝑡, 𝑆, 𝐼1, 𝐼2, 𝑄, 𝑅,𝑀) = 𝜀𝜆𝑆 + 𝜃1𝑅 + 𝜔2𝐼2 − (𝜇 + 𝜔1 +𝜙1)𝐼1                      

𝑑𝐼2

𝑑𝑡
= 𝑔3(𝑡, 𝑆, 𝐼1, 𝐼2, 𝑄, 𝑅,𝑀) = (1 − 𝜀)𝜆𝑆 + 𝜃2𝑅 + 𝜔1𝐼1 − (𝜇 + 𝜔2 + 𝜙2 + 𝛿1)𝐼2

𝑑𝑄

𝑑𝑡
= 𝑔4(𝑡, 𝑆, 𝐼1, 𝐼2, 𝑄, 𝑅,𝑀) = 𝜙1𝐼1 + 𝜙2𝐼2 − (𝜇 + 𝛿2 + 𝜂)𝑄                                     

𝑑𝑅

𝑑𝑡
= 𝑔5(𝑡, 𝑆, 𝐼1, 𝐼2, 𝑄, 𝑅,𝑀) = 𝜂𝑄 − (𝜇 + 𝜃1 + 𝜃2 + 𝛼)𝑅

𝑑𝑀

𝑑𝑡
= 𝑔6(𝑡, 𝑆, 𝐼1, 𝐼2, 𝑄, 𝑅,𝑀) = 𝛼𝑅 − (𝛾 + 𝜇)𝑀                    

                                          
}
 
 
 
 

 
 
 
 

       (7)  

 

The RK4 scheme for Eq. (7) based on Eqs. (5) and (6) is given in Eq. (8) below: 

𝑆𝑟+1 = 𝑆𝑟 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)  

 

(8) 

𝐼1𝑟+1 = 𝐼1𝑟 +
1

6
(𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4)   

𝐼2𝑟+1 = 𝐼2𝑟 +
1

6
(𝑚1 + 2𝑚2 + 2𝑚3 +𝑚4)  

𝑄𝑟+1 = 𝑄𝑟 +
1

6
(𝑛1 + 2𝑛2 + 2𝑛3 + 𝑛4)  

𝑅𝑟+1 = 𝑅𝑟 +
1

6
(𝑝1 + 2𝑝2 + 2𝑝3 + 𝑝4)   

𝑀𝑟+1 = 𝑀𝑟 +
1

6
(𝑞1 + 2𝑞2 + 2𝑞3 + 𝑞4)   

With  

𝑘1 = 𝜋 + 𝛾𝑀𝑟 − 𝜆𝑆𝑟 − 𝜇𝑆𝑟 

 

(9) 

𝑙1 = 𝜀𝜆𝑆𝑟 + 𝜃1𝑅𝑟 +𝜔2𝐼2𝑟 − (𝜇 + 𝜔1 +𝜙1)𝐼1𝑟 

𝑚1 = (1 − 𝜀)𝜆𝑆𝑟 + 𝜃2𝑅𝑟 +𝜔1𝐼1𝑟 − (𝜇 + 𝜔2 + 𝜙2 + 𝛿1)𝐼2𝑟 

𝑛1 = 𝜙1𝐼1𝑟 + 𝜙2𝐼2𝑟 − (𝜇 + 𝛿2 + 𝜂)𝑄𝑟 

𝑝1 = 𝜂𝑄𝑟 − (𝜇 + 𝜃1 + 𝜃2 + 𝛼)𝑅𝑟 

𝑞1 = 𝛼𝑅𝑟 − (𝛾 + 𝜇)𝑀𝑟 

𝑘2 = 𝜋 + 𝛾 (𝑀𝑟 +
ℎ

2
𝑞1) − 𝜆 (𝑆𝑟 +

ℎ

2
𝑘1) − 𝜇 (𝑆𝑟 +

ℎ

2
𝑘1)    𝑒𝑡𝑐 

 

Each equation in Eq. (8) was iterated based on RK4 scheme with the help of Maple 18 software. 

  



 

Odetunde et. al., Malaysian Journal of Computing, 6 (1): 745-757, 2021  

 

751 

 

5. Result  

 

The series in Eq. (4) was numerically simulated and the result was compared with the solution 

of Runge-Kutta order 4 method for Eq. (8). For each sub-population class of the model, the 

solutions obtained for both methods were graphically plotted and shown in Figure 1 – 6. 

 

 
Figure 1.  Dynamics of Susceptible class with time. 

 

The population of the susceptible grow as time t increases. The result for both methods 

(DTM and RK4) agreed as seen in Figure 1. This implies that DTM also gives a reliable 

approximation that can be used to solve non-linear problems that may arise from modelling of 

physical problems. From the model result display in Figure 1, the susceptible sub-population 

will maintain a steady increase if there is early diagnosis, removal of the infected individual 

through quarantine, effective treatment and sensitization towards maintaining proper hygiene.  

 
Figure 2.  Dynamics of Asymptomatic carrier class with time. 
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From Figure 2, the sub-population of asymptomatic carrier keep decreasing for a period 

of time before increasing over time of simulation. This is due largely to people moving from 

no/mild symptoms to developing severe symptoms as a result of negligence or non-testing due 

to lack of adequate intervention from the government in developing countries. After some 

period (t=7months), it rises again due to emergence of new cases as a result of non-compliance 

with best practices that can reduce the risk of infection (social distancing, regular hand 

washing/sanitizing, and use of recommended face mask). 

 

 
Figure 3.  Dynamics of Symptomatic Infected class with time. 

 

Figure 3 shows that symptomatic infected compartment increases over the period of time. 

This confirms the high-infectivity nature of the disease. The more the asymptomatic carrier 

stays without testing, the more it deteriorates into severe infection, in which case leads to more 

people being infected most especially the health workers. 

 
Figure 4.  Dynamics of Quarantine class with time. 

 

Quarantine sub-population also increases with time due to discovery of more people from 

the symptomatic class and less people from the asymptomatic class (the high-income socio-

economic group that can afford to go for routine check). The vast majority of people in this 
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class are discovered at critical stage of the infection due to symptoms. Also, from Figure 4, the 

result for both methods used have almost the same degree of accuracy. 

 

 
Figure 5.  Dynamics of Recovered class with time. 

 

The recovered sub-population slowly but consistently increases despite no confirmed 

effective treatment strategy for COVID-19 according to Figure 5. This is due to several efforts 

directed towards eliminating the infection as well as body immunity of some individuals. It was 

reported that the majority of the fatality due to the disease is associated with underlying ailment 

(like diabetes and hypertension) of an infectious individual. However, the approximate solution 

for DTM differs from the numerical result of RK4 for this sub-population. This variation may 

arise from the value of initial condition chosen for the recovered sub-population. 

 

 
Figure 6. Dynamics of individuals with Partial Immunity 

 

The partially immune population due to recovery from treatment slowly and consistently 

reduces over time according to Figure 6. This is a result that ascertain that immunity from 

COVID-19 due to treatment is not guaranteed. Also, the rate of losing the immunity differs 

(0.08219 in DTM to 0.0274 in RK4) both cases. Thus, COVID-19 prevalence is further 
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increased due to the possibility of reinfection and relapse (which are higher in DTM solution 

than RK4 solution as obtained from Figure 6). For a stable and minimal infection community, 

there has to be an intervention that guarantees protection against least contact with the infection. 

The following Table 2 shows the result obtained for both methods (DTM and RK4) 

together with the modulus of the error in the two methods. 

Table 2. Result Values for DTM and RK4 Compared 

Susceptible Compartment  

Time (t) DTM Value RK4 Value Approximate Error % Error 

0 10250 10250 0 0 

0.1 10421.27677 10421.2976050359 0.0208350359389442 1.9993
× 10^(−4) 

0.2 10591.18943 10591.2752148022 0.0857848021969403 8.0996
× 10^(−4) 

0.3 10759.67539 10759.8739881044 0.198598104427219 1.8457
× 10^(−5) 

0.4 10926.66595 10927.0291049432 0.363154943173868 0.0033 

0.5 11092.08576 11092.6693229912 0.583562991228973 0.0053 

Asymptomatic Carrier Compartment  

0 100 100 0 0 

0.1 94.68594829 94.6859082052910 0.0000400847090418210 4.2334
× 10^(−5) 

0.2 90.45941352 90.4592426820865 0.000170837913501032 1.8886
× 10^(−4) 

0.3 87.22144905 87.2210179270702 0.000431122929811067 4.9429
× 10^(−4) 

0.4 84.88817158 84.8873153398327 0.000856240167308897 0.00100 

0.5 83.38913663 83.3876936457131 0.00144298428688217 0.0017 

Symptomatic Infected Compartment  

0 60 60 0 0 

0.1 60.58120235 60.5811706854506 0.0000316645494109480 5.2268
× 10^(−5) 

0.2 61.44142143 61.4412591663590 0.000162263641001914 2.6410
× 10^(−4) 

0.3 62.59501408 62.5945869517748 0.000427128225155116 6.8237
× 10^(−4) 

0.4 64.05586266 64.0550143677824 0.000848292217597191 0.0013 

0.5 65.83789217 65.8364492622422 0.00144290775780576 0.0022 

Quarantine Compartment  

0 60 60 0 0 

0.1 76.35492491 76.3549279371374 0.00000302713743849381 3.9646
× 10^(−6) 

0.2 92.03730962 92.0372939058907 0.0000157141092813617 1.7074
× 10^(−5) 

0.3 107.2011486 107.201068877237 0.0000797227628623887 7.4368
× 10^(−5) 

0.4 121.9898293 121.989619951491 0.000209348509400797 1.7161
× 10^(−4) 

0.5 136.5378135 136.537359734028 0.000453765971514031 3.2334
× 10^(−4) 

Recovered Compartment  

0 50 50 0 0 

0.1 50.50450687 50.3239952161646 0.180511653835410 0.3587 
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0.2 51.16699875 50.6500898903303 0.516908859669691 1.0205 

0.3 51.98098230 50.9782976267836 1.00268467321636 1.9669 

0.4 52.94147000 51.3086321179699 1.63283788203005 3.1824 

0.5 54.04487727 51.6411071450522 2.40377012494782 4.6548 

Partial Immunity Compartment  

0 30 30 0 0 

0.1 27.71207592 28.6745970793992 0.962521159399181 3.3567 

0.2 25.39755107 27.4089924223092 2.01144135230918 7.3386 

0.3 23.04938440 26.2004963048879 3.15111190488793 12.0269 

0.4 20.66079596 25.0465400026505 4.38574404265052 17.1504 

0.5 18.22520053 23.9446704619974 5.71946993199740 23.8862 

 

6. Discussion 

A new mathematical model to study the dynamics of COVID-19 infection was presented for 

analysis. The infected class was further sub-divided into asymptomatic and symptomatic 

classes to establish the effect of early diagnosis and quarantine on the overall new case within 

a population. The non-linear system of equations from the developed SI1I2QRM was solved 

using DTM. Secondary data from the literature and W.H.O. reports were relied upon for the 

numerical simulation of the model. Figure 1 shows the population change for the Susceptible 

class over a period of one year. Also, Figure 1 give the results for both DTM and RK4 solution 

of the S(t) class. The graph in Figure 1 established that the DTM method adopted to solve the 

model equations is efficient in solving non-linear differential equations. According to W.H.O. 

situation report 209, total confirmed cases for Nigeria as at August, 2020 were 48,770 with 325 

of the number occurring within the previous 24 hours (WHO, 2020c). Based on the result 

obtained from the developed model, the susceptible class will increase if the preventive 

measures such as early diagnosis, social distancing, regular surface and hand sanitizing is 

properly kept by all. The results for other sub-population of the model as obtained were given 

in Figure 2 to Figure 6 respectively. 

 

7. Conclusion  

A mathematical model for the study of the reinfection role in the transmission dynamics of 

COVID-19 was proposed and analyzed. Semi-analytical method of solution using DTM for the 

non-linear system of equations of the model was presented to describe the non-linear nature of 

the model. The efficacy of DTM to solve non-linear mathematical equation was established by 

comparing the result obtained with RK4 standard numerical scheme, and the error was tabulated 

in Table 2. The method of solution employed was found to be relatively accurate since we are 

considering a physical problem with several properties. Some of the results obtained from the 

model include: (i) effective treatment of the infection does not guarantee an immunity against 

reinfection as the graph of the partially immune class reduces with time; (ii) recovery class 

increases steadily and progressively not because of a standard treatment strategy but due to the 

immune system of the individuals infected; and (iii) asymptomatic class reduces as obtained in 

the graph not because of self-recovery (without treatment) but because they moved to 

symptomatic class due to non-testing and no adequate knowledge. Thus, from the findings, it 

is recommended that: (a) sensitization be taken seriously especially among the uneducated and 

poor classes; (b) proper treatment strategy be obtained that will effectively cure those with low 

immune system (or with underlying ailments like diabetes, hypertension etc.) 
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