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Abstract— The screening of diabetic retinopathy (DR) affects 

the visual inspection of retina images taken by ophthalmologists to 

detect the specific signs of pathology such as exudate, hemorrhage 

(HEM) and microaneurysm (MA). However, this process is 

currently conducted manually in many hospitals. Therefore, it is 

time-wasting and risky for humans to make mistake. In general, 

this paper introduces an automated machine learning algorithm 

for detecting diabetic retinopathy (DR) in fundus images. It also 

involves an image pre-processing enhancement technique to 

support accuracy on deep learning for DR classification. For the 

image enhancement process, high-pass filter, histogram 

equalization and de-haze algorithm are applied to improve the 

visual quality of fundus images. By using four convolution layers, 

a CNN architecture is set up to classify the three pathological 

signs; HEM, MA and exudate. Two public online datasets, e-

Ophtha and DIARETDB1 are used to evaluate the performance of 

this system. From training and testing results using enhanced DR 

images, a slight improvement in classification accuracy is revealed, 

compared to those original images with no enhancement for both 

datasets.    

 
Index Terms— Diabetic retinopathy, microaneurysm, 

hemorrhage, exudate, convolutional neural network, high pass 

filter ,histogram equalization , de-haze.  

I. INTRODUCTION 

IABETES is a major disease that directly affects 422 

million people worldwide. World Health Organization 

(WHO) estimates that Malaysia will have 2.48 million people 

with diabetes in 2030 [1]. Diabetes is caused by the pancreas 

failure to generate insulin in the human body [2]. Eventually, 

this disease can cause organ failure. One of the major concerns 

of diabetes is when it starts affecting the retina of the eye. This 

 disease is called diabetic retinopathy (DR). In addition, late 

treatment at an early stage and unsupervised DR can cause 

vision loss. 
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However, early diagnosis and treatment will help save more 

costs and prevent patient from loss-sightedness [3].  

A traditional DR examination would be based on a manual 

examination using ophthalmoscopy methods based on retina. 

However, these conventional methods are time consuming, 

tedious, and can lead to inconsistent diagnosis [2]. From the 

past three decades, the automatic diagnosis of DR using 

computer aid diagnosis (CAD) techniques has become popular 

among medical researchers. This helps reduce the workload of 

ophthalmologists and provide timely diagnosis for early 

treatment[2]. For automated screening, there are several 

machine learning techniques that have been proposed from 

previous research to detect and screen common signs of DR 

pathology such as microaneurysm (MA), hemorrhage (HEM), 

and exudates [4]. These frameworks include the use of artificial 

neural network (ANN) [5], support vector machine (SVM) [6], 

k-nearest neighbor (K-NN) [7] and convolution neural network 

(CNN) [4], [8]–[10]. 

Lately, the deep learning in DR screening and detection 

systems using CNN has shown an increasing trend among 

researchers. CNN is the most method using deep neural 

network learning algorithms for image identification. CNN 

involves minimum pre-processing as it automatically learns the 

image features based on the input image given compared to the 

traditional algorithm method which needs to manually extract 

the feature. This technology helps human effort and its ability 

to solve complex feature designs is the main key advantage. 

Inspired by the work [8], this paper introduces a deep 

learning algorithm using the convolution neural network (CNN) 

for an automatic detection of diabetic retinopathy (DR) in 

fundus images. However, previous works done by researchers 

use histogram equalization as contrast enhancement in the 

image pre-processing stage on the DR image.  The new image 

enhancement technique proposed in this paper seeks to compare 

the performance of the DR classification using CNN.   

II. CLINICAL FEATURES  

 As the diagnosis of DR disease, specific DR features need 

to be screened out by an ophthalmologist from a suspected 

fundus picture of DR patients. These pathological features 

include MA, HEM and exudates as shown in Fig. 1. 
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Fig. 1. Three (3) common DR pathological signs. 

 

Firstly, MA is usually a small round shape, dots and dark red 

spots caused by high blood sugar (hyperglycemia) in the blood 

vessel wall [11]. The amount of MA increases as the DR 

increases. The MA shape dimension range is between 20um and 

200um equivalent to 1-3 pixels in different images [11].  

Secondly, HEM can appear due to the leakage or rupture of 

blood from the capillaries or blood vessels. It looks like red 

flames, dots and spots [12]. Usually HEM is 125µm larger in 

size than MA [13]. Lastly, exudate usually appears in bright 

white or yellowish white with a sharp edge to the bloodstream 

background [11]. It is from the lipoproteins coming from the 

retinal tract to the outer layer of the retina. Exudates are often 

arranged in a circular shape [13]. 

III. METHODOLOGY 

A. Data Collection 

In this research, two (2) datasets were used namely 

DIARETDB1 [15] and e-Ophtha [14]. 

DIARETDB1: Contains a total of 89 fundus images of which 

84 types of mild non-proliferative signs (Microaneurysms) of 

diabetes retinopathy, and 5 normal normal images with no signs 

of diabetes retinopathy are observed, according to all experts 

participating in the assessment.  

e-Ophtha: E-ophtha coming from two subsets of a dataset: 

Firstly, e-ophtha-MA dataset totalling 148 images with 

microaneurism (MA) or minor HEM. Secondly, the dataset is 

e-ophtha-EX containing 47 pictures with exudates (EX).  

This dataset is given the authorization or reference (ground 

truth) to the MA and Exudate marks. This basic truth 

description is provided by two experts in each department of 

ophthalmology. Table I shows the number of normal and 

abnormal images in various databases. 

 TABLE I                                                                                                                         

TOTAL NUMBER OF ABNORMAL AND NORMAL FUNDUS IMAGE FOR 

DIARETDB1 AND E-OPTHA 

 

Dataset  No. of Image   

  Normal Abnormal  
     
DIARETDB1  5 84  
e-Ophtha-MA  233 148  
e-Ophtha-Ex 
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B. Image Enhancement 

One of the problematic pictures of retina is that there are 

variations in the brightness and contrast that make it difficult to 

identify DR features possibly resulting from the bad 

performance of deep neural network. Moreover, each design 

has its own uniqueness [11]. There are several reasons why the 

fundus images are blurry and the images are in low lights when 

taken by ophthalmologists. One of the common reasons is the 

inability to open the pupil (constrict) under bright light 

condition. A cloudy aging cataract at the eye lens also provides 

less light to reach the retina. Because of the inconsistent 

brightness and contrast colour of the retinal image, to achieve 

the objective f getting a strong CNN performance, our proposed 

method is to enhance all the dataset images using the high pass 

filter, histogram equalization and de-haze algorithm technique 

to remove the noise.   

High-pass filter is widely used in the biomedical image 

enhancement. This filter attenuates low frequency (unwanted 

noise) and allows high frequency to pass filter. As the result, 

the high frequency area will result in sharpening [15]. Now, the 

image processing uses the sharpened image as ridge and edge 

detection. High pass filter was set by the frequencies outside 

radius D0. The equation of this high pass filter comes with the 

number of order n with distance D(u,v) and a cut-off frequency 

D0 which is defined as: 

 

𝐻(𝑢, 𝑣) =
1

1+[𝐷0/D(u,v)]2𝑛                       (1) 

However, applying the high-pass filter on this fundus image 

will also enlarge the intensity gradients in the images. As the 

result, it affects the colour intensities of the images which make 

RGB colour look faded. Therefore, the histogram equalization 

(HE) has been used to enhance the image and to visualize the 

pathological signs. Especially in the medical domain, the HE 

technique enhancement of image is used in a wide range of 

medical imaging applications [16]–[18]. The image contrast 

improves the image by flattening and stretching the dynamic 

range of the histogram for the target image [19]. Assuming the 

digital image, F(i,j), with total N pixels and grey level range [0, 

K-1, the density function image was calculated based on 

mathematical equation (2): 

                       𝑝(𝑘) =
𝑛𝑘

𝑁
,        𝑓𝑜𝑟 𝑘 =  0,1, … , 𝐾 − 1             (2) 

Where 𝑛𝑘 is the number of pixels with the number of 

grayscale 𝑘 in the image. Next, the cumulative distribution 

function (CDF) of the image  F(i,j) can be derived by (3): 

 

     𝐶(𝑘) = ∑ 𝑃𝑚  ,        𝑓𝑜𝑟  𝑘 = 0,1, … . . , 𝐾 − 1𝑘
𝑚=0               (3) 

 

From the CDF value in equation (3), HE matches an input 

level 𝑘 to the output level 𝐻𝑘 as described in equation (4):   

                                    𝐻𝑘 = (𝐾 − 1). 𝐶𝑘                         (4) 

 Therefore, the gain H_k at the output level for HE can be 

referred to in Formula (5): 
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                        ΔH𝑘 =  𝐻𝑘 − (𝐻𝑘 − 1) = (K-1). P(k)        (5) 

 From the related equations, it is proven that the increase in 

the level of gain 𝐻𝑘 is proportional to the probability of the 

associated level 𝑘 in the original image [20]. HE helps to figure 

out the hidden details within the image by stretching out the 

contrast of the local region. Finally HE helps to make 

observable pathological signs within the region processed.

 Besides the fact that the histogram equalization applies the 

contrast enhancement, the other method is used to enhance the 

low light image especially for retinal images with poor lighting 

condition. The de-haze algorithm on the inverted video was 

applied by [21], taking this method approach to be applied to 

the fundus image.             For images 

in hazy condition, the intensities of the background pixels are 

always high in all the colour channels. However, usually there 

is at least one colour which is low in the channel because of the 

shadow, shape, colour and etc [21]. First of all, the De-haze 

enhancement algorithm is proposed by applying an invert 

operation on the low image. The invert model is described 

using:  

                                  𝑅𝑐(𝑥) = 255 − 𝐼𝑐(𝑥) ,                          (6) 

where c is the RGB color channel. 𝐼𝑐(x) is the intensity of 

low lighting input image colour channel of pixel x. Therefore  

𝑅𝑐(𝑥) is the intensity of the inverted image R. The image haze 

removal model is shown in (7): 

                          𝑅(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥)),              (7) 

where A is the global atmospheric light. 𝑅(𝑥) is the intensity 

of pixel x from the camera. 𝐽(𝑥) is the intensity of the original 

object. 𝑡(𝑥) represents the percentage of the light emitted from 

the object. The critical part to remove the haze in this algorithm 

is to estimate A and 𝑡(𝑥) from the input image 𝐼(𝑥). As the 

result it can recover 𝐽(𝑥) from 𝐼(𝑥). Since the atmosphere is 

homogenous, the 𝑡(𝑥) can be expressed as follows : 

                                           𝑡(𝑥) = 𝑒−𝛽𝑑(𝑥),                               (8) 

Where 𝛽 is the scattering coefficient of the atmosphere. It 

indicates that the scene radiance is attenuated exponentially 

with the scene depth d [22].  Thus, according to equation (7), 

the recovery of  𝐽(𝑥) can be expressed as follows: 

                                𝐽(𝑥) =  
𝑅(𝑥)−𝐴

𝑡(𝑥)
+ 𝐴,                                  (9) 

However, equation (9) may lead to the under enhancement of 

the low –lighting image. To optimize the calculation of 𝑡(𝑥), 

the focus is to enchance the region of interest such as MA, 

HEM, and Exudate while avoiding the processing for the 

background (no-sign)  in low light images. To optimize 𝑡(𝑥), 

the multiplier P(x)is introduced  into (9), and the P(x) can be 

expressed as follows:   

                 𝑃(𝑥) = {
2𝑡(𝑥), 0 < 𝑥 < 0.5

1, 0.5 < 𝑥 < 1
,                              (10) 

Therefore, the new recovery image equation becomes 

                              𝐽(𝑥) =  
𝑅(𝑥)−𝐴

𝑃(𝑋)𝑡(𝑥)
+ 𝐴,                                 (11) 

When the t(x) is smaller than 0.5, the pixel needs to be 

boosted. Thus, a small value is assigned P(x) to make P(x) t(x) 

smaller in order to increase the RGB intensities of the pixel.  

 For low-lighting images, once J(x) is obtained, the image 

applies step equation (6) to re-invent the back image to produce 

the enhanced image E from the original input image. In rhe 

overall method of the enhancement image process flow, Fig. 2 

represents the stage of enhancement flow of the two different 

proposed methods.  

Histogram 
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Fig. 2 Enhancement stage within flow of the proposed approach. 

C. Patch split and  labeling 

After the image pre-processing process has been completed, 

the image is cut into patches with the dimension of 50x50 pixel. 

This size of patch is defined based on the sufficient area to cover 

all the categories of pathological signs in fundus images. These 

patches are labelled and sorted into the associated groups.  

                Total patch images are 

categorised by comparing the original image with the ground 

truth images. The patch will automatically be compared and 

sorted in class based on the three pathological signs : exudate, 

HEM, MA and background (no signs of DR) as shown in Fig. 

3. Patch to patch is automatically compared based on the ground 

truth and finally sorted into class as shown in Fig.4. The data 

image augmentation like the duplicate and rotation was applied 

on the patches to increase more dataset training and testing to 

improve the performance of CNN for classification. 

  

Fig. 3. Image follow the ground truth to identify position each sign category 

before split. 
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Fig. 4. Patches are grouped into MA, HEM, exudate and no-Sign. 

A total of 5569, 3328, 4816 patches for MA, HEM, exudate 

and 6642 patches with no pathological sign (background) for 

DIARETDB1 were produced. Meanwhile, a total of 2292, 4193 

patches for MA, exudate and 6863 patches with no signs 

(background) were produced for the e-Optha dataset. The total 

number patch was divided into 60% for training and remaining 

40% used for the testing validation purpose as shown in Table 

II and Table III: 

TABLE II.            

 TOTAL NUMBER PATCHES OF DIARETDB1 

Type of Dataset Microaneurysm Haemorrhage Exudate No-

Sign 

Training  3342 1998 2891 3987 

Testing 2229 1332 1927 2657 

Total Number  5571 3330 4818 6644 

TABLE III.             

 TOTAL NUMBER PATCHES OF E-OPHTA 

Type of Dataset Microaneurysm Haemorrhage Exudate No-Sign 

Training 1376 N/A 2517 4119 

Testing 918 N/A 1678 2746 

Total Number  2294 N/A 4195 6865 

 

D. CNN - Patch Training  

CNN has been executed using CUDA core NVIDIA 

GTX980 supported with MATLAB 2017b. The network 

architecture of CNN is developed as seen in Fig. 5 using four 

(4) convolution layers. The first convolution layer using 64 

feature maps in each convolution layer is pulled by the kernel 

size of (3x3) pixels. Next, the activated function uses the 

rectified liner unit (ReLU) in this research to prevent saturation 

and allow it to compute faster than the sigmoid [23]. Therefore, 

the Max-Pooling function helps to reduce the feature map size 

kernel (2x2) pixel to simplify the output parameter. Thirdly, the 

Max-Pooling (MP) function is normalised by the normalization 

layer (NM) to expedite the network training and sensitivity to 

various networks. Lastly, the Max-Pooling Layer with 512 

features was extracted using a fully connected layer (FC) to link 

with 512 neurons. The output result of FC was normalized  by 

softmax activated function to determine the probabilities 

classification by the four (4) classification layers. 

Fig. 5. (CNN) parameter. CONV: convolution layer, MP: max pooling layer, 

FC: fully connected layer. 

To define the value network training parameter on the CNN 

in MATLAB, the optimum parameter of CNN is defined in 

Table IV: 

TABLE IV.                                                                                                                       

CNN SETUP INPUT PARAMETER 

CNN parameter Value 

Initial Learning Rate 0.0001 

Maximum Epochs 200 

Validation Frequency 100 iterations 

Mini Batch Size 32 

Convolution layer 4 

Solver Method SGDM 

Filter Size Step Down (11,8,7,6,5,4,3,2,) 

Feature Map Step Up (64,128,256,512) 

Activate Function ReLU, Softmax 
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IV. PERFORMANCE EVALUATION 

In medical research, the performance of classification is 

evaluated by using the accuracy and false negative rate (FNR). 

The accuracy in equation (12) refers to how correct a diagnostic 

test identifies and excludes a given condition. The false 

negative rate (13) is used to monitor the type of switching error 

percentage from the validation. Both performance validation 

was given as follows: 

 

                         𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                 (12) 

 

                        𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
= 1 − 𝑃𝑃𝑉                         (13) 

where: TP=true positive, TN=true negative, FP= false positive 

and FN= false negative. 

V. RESULTS AND DISCUSSION 

The enhancement method 1 on the retinal image was 

completely enhanced from the original image by applying the 

high-pass filter to sharpen the edge and this is followed by the 

histogram equalization method to increase the contrast of the 

image. As the result, the output enhance image gives clearly 

observable pathological signs compared to the original image. 

The step flow and output enhancement 1 can be observed in Fig. 

6.  

 

Fig. 6. The output of Histogram Equalization (right) after passing through 

high pass filter (middle) from the Original image (left). 

Similar to the image enhancement method 2 in Fig.7, the 

image was successfully enhanced by applying high-pass in the 

first step to remove the noise and sharpen the edge (a). 

Secondly, the image inverts RGB color from the high pass 

image (b). Thirdly, the image is applied to de-haze using 

equation (9) to enhance the low light image as shown in image 

(d). Finally, the invert operation was reapplied as the resulting 

enhanced image is able to see more salient pathological signs in 

(e).  

In this experiment, a total of 60% patch is reserved for 

training, while the remaining 40% patches are reserved for the 

testing and validation purposes. Once CNN starts training, Fig. 

7 shows the monitor training progress on the accuracy and error 

loss of the network against epoch.  

During the training progress, the training accuracy and error 

loss percentage shows improvement significantly starting from 

early stage until it reached the 9th epoch. However, the accuracy 

percentage started to slowly converge for more than 90% while 

the error started to slowly converge when the error percentage 

achieved less than 0.3%. This training progress monitoring 

shows that the CNN model was able to extract and learn the 

features itself based on the dataset given to classify the 

pathological signs.  

 

 

Fig. 7. (a) Original image, (b) high-pass filter result. (c) Inverted result (d) 
Applying de-haze algorithm, (e) Final output image reapplying the inverted 

image algorithm. 

 

Fig. 7. Deep learning training progress shown accuracy percentage and error 

loss percentage of the network against iteration. 

The CNN performance was validated by using the testing 

dataset based on the training dataset. The accuracy and error for 

the false negative rate (FNR) of the CNN was calculated based 

on the confusion matrix. The confusion matrix summarizes the 

result with two dimensions namely the predicted class and 

actual class. Fig.8, shows an example of the confusion matrix 

for DIARETDB1 with th eimage enhancement method 1. 
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Fig. 8. Total four (4) class of confusion matrix plot for DIARETDB1. 

For CNN that optimizes the setup training and validation, we 

run 4 different layers of convolution with the same 100 epoch 

at the same dataset enhancement image with the same GPU to 

optimize the performance of CNN. Variables of Conv Layer are 

varied using 1 layer(a) 2 layer(b) 3 layer(c) and 4layer(d) as 

shown in Table V.  

From the result in Table V, the increase in the convolution 

layer will increase the overall performance accuracy of CNN 

from 94.1% to 96.3%. The CNN started to achieve the best 

performance when Conv layer was set as layer 3 which 

achieved 96.2% of DIARETDB1 dataset enhancement. 

However, the increase of Conv layer will increase the training 

and testing time from 142 min to 173 min. That said, increasing 

the Conv layer gives a smooth training accuracy as shown from 

(a) to (d)  as referred to the blue line. 

Table VI presents the overall CNN accuracy with the 

application of the method enhancement and comparison of the 

performance on the original image. Without the enhancement 

of the original image, by applying image  enchancement 

method 1  and method 2 it shows that the overall CNN 

performance accuracy percentage has improved by 4.3% and 

3.6% respectively for E-Optha . For DIARETDB1, by using the 

image enhancement method 1  and method 2, it also improved 

the overall accuracy by 1.2% and 1.5% respectively. Both 

methods of image enhancement resulted in the improved visual 

quality of pathological signs where they become more visible. 

As the result, it is easier for the CNN to extract and learn 

important features which are able to result in better 

classification of accuracy. From the previous work, many 

researchers use the image enhancement method 1 as the DR 

screening. Comparing our result by [8] it is proven that the 

image enhancement method 2 is a reliable method for DR 

screening. 

TABLE V                                                                                                                   
CNN CONVOLUTION LAYER ANALYSIS 

(a) 

 

Convolution 

Layer : 1 

 

Epoch : 100 

 

Time Training & 

Validation : 142 

min 32 sec 

 

Overall Accuracy 

:94.1%  

(b) 

 

Convolution 

Layer : 2 

 

Epoch : 100 

 

Time Training & 

Validation : 165 

min 55 sec 

 

Overall Accuracy: 

95.3% 

(c) 

 

Convolution 

Layer : 3 

 

Epoch : 100 

 

Time Training & 

Validation : 173 

min 54 sec 

 

Overall Accuracy: 

96.2% 

(d) 

 

Convolution 

Layer : 4 

 

Epoch : 100 

 

Time Training & 

Validation : 173 

min 75 sec 

 

Overall Accuracy: 
96.3% 
 

  
 

Accuracy 
                                 Training             Validation 

 

Loss 

                                 Training 

                                            Validation 

 

 

 

 

 

 



Abu Samah et. al.: Diabetic Retinopathy Pathological Signs Detection using Image Enhancement Technique and Deep Learning 

50 

 

TABLE VI                                                                                                                   
EFFECT OF  PEFORMANCE CNN FOR EACH DATASET DIARETDB1 AND     

E-OPTHA BY APPLYING ENCHANCEMENT TECHNIQUE   

Dataset Image Pre-Processing 
Accuracy (%) 

No Sign Exudate MA HEM Overall 

E-Optha 

Without Enhancement 
(Original Image) 

97.4  

(95.1-

99.6) 

98.8 

(97.8-

99.4) 

84.6  

(80-

92.1) N/A 

95.8  

(94-97.1) 

Enhancement 1  
 (high Pass + HE) 

99.9 

(99.9-

100) 

99.7 

(99.6-

99.7) 

99.1 

(99.2-

99.0) N/A 

99.8 

(99.7-99.8) 

Enhancement 2   
(high Pass + De-Haze) 99.9(99.

9-100) 

99.0 

(98.9-

99.1) 

99.3 

(98.9-

99.9) N/A 

99.4 (99.3-

99.4) 

  DIARETDB1 

Without Enhancement 
(Original Image) 

99.1 

(98.7-

99.3) 

97.0 

(96.6-

97.6) 

88.6 

(87.9-

89.4) 

88.5 

(85.2-

90.4) 

94.4 (93.7-

94.8) 

Enhancement 1  
 (high Pass + HE) 

99.8 

(99.7-

99.9) 

96.2 

(95.8-

96.6) 

95.5 

(94.2-

96.5) 

90.6 

(90.2-

91.9) 

95.6 (94.4-

96.4) 

Enhancement 2   
(high Pass + De-Haze) 

99.9 

(99.8-

100) 

93.9 

(93.3-

94.3) 

94.6 

(93.9-

95.5) 

91.7 

(91.3-

92.3) 

95.9 (95.70-

95.8) 

 

Even both methods of enhancement resulted in the overall 

improvement for both datasets, based on the result from Table 

VI, where there are some limitations and root causes which do 

not meet the expectation and which makes us to have to take a 

closer look. The miss predicted confusion matrix is presented 

as false negative rate (FNR). We have completed an analysis 

from both datasets E-Optha and DIARETDB1 on the error 

validation using the false negative rate equation. Both results 

on FNR are shown in Table VII. 

TABLE VII                                                                                                                           
CNN MISS CLASSFICATION PREDICTION FOR E-OPTHA AND DIARETDB1 

WITH AND WITHOUT IMAGE ENCHANCEMENT   

Dataset Image Pre-Processing 
False Negative Error (%) 

No Sign Exudate MA HEM Overall 

E-Optha 

Without Enhancement 

(Original Image) 2.6 (0.4-

4.9) 

1.2(0.6-

2.2) 

15.4 

(7.9-20) N/A 4.2 (2.9-6) 

Enhancement 1  

 (high Pass + HE) 0.1 (0-

0.1) 

0.3 

(0.3-

0.4) 

0.8  

(0.8-1) N/A 0.2(0.2-0.3) 

Enhancement 2   

(high Pass + De-Haze) 0.1 (0-

0.1) 

1 (0.9-

1.1) 

0.7 (0.1-

1.1) N/A 0.6 (0.6-0.7) 

  DIARETDB1 

Without Enhancement 

(Original Image) 
0.9 (0.7-

1.3) 

0.3 

(2.4-

3.4) 

11.4 

(10.6-

12.1) 

11.5 

(9.6-

14.8) 5.6 (5.2-6.3) 

Enhancement 1  

 (high Pass + HE) 
0.2 (0.1-

0.3) 

3.8 

(3.4-

4.2) 

4.5 (3.5-

5.8) 

9.4 (8.1-

9.8) 4.4 (3.6-5.6) 

Enhancement 2   
(high Pass + De-Haze) 

0.1 (0-
0.2) 

6.1 

(5.7-
6.7) 

5.4 (4.5-
6.1) 

8.3 (7.7-
8.7) 4.1 (4.2-4.3) 

 

First of all, the CNN miss prediction analysis for E-Optha 

shows that the highest error was on Exudate (0.3-1%) and MA 

(0.7-0.8%) after applying the image enchancement. The root 

cause of this miss prediction between Exudate and MA is 

proven by the image in (b) in Fig.9. This has shown that the 

same patch had overlapped between Exudate and MA where the 

CNN appeared uncertain to predict the right classification 

during both the test and validation.  

The second miss prediction analysis on DIARETDB1 dataset 

shows a major contribution on the error classification that 

happened on  MA(4.5-5.4%) and HEM(8.3-9.4%) after 

applying image enchancement 1 and 2. The root cause of the 

miss prediction is due to the pattern and shape of MA and HEM 

overlapping in the same patch, which makes CNN confused to 

classify both signs. In addition HEM and MA have a similarity 

in terms of the morphological shape. These can be proven in (a) 

Fig.9. In general, CNN had achieved higher accuracy for E-

Optha dataset because the category is lesser to classify 

compared to DIARETDB1 [23]. Lasty, the patch with MA 

exists nearly with no-sign that contains blood vessel making 

CNN left with slight error to identfy MA or background (no-

sign). This can be observed  in Fig. 9 (c). 

 

Fig. 9. (a) Microaneurysm and Hemorrhage overlap in the same patch. (b) 

Microaneurysm and Exudate overlap in the same patch. (c) The No-Sign 
patches contain vessels that overlap with Microaneurysm.  

 

VI. CONCLUSION 

Overall, this paper has focused on the developed deep 

learning algorithms using a convolution neural network (CNN) 

for the automated detection of Diabetic Retinopathy (DR) signs 

in fundus images. In other words, the idea to propose de-haze 

and histogram equalization technique on the image 

enhancement helps offer better overall accuracy. The result of 

comparison with and without the enhancement classification 

accuracy for DIARETDB1 improved 1.2% and 1.5% for 

enhancement 1 and 2 respectively, while e-Ophtha has 

increased the accuracy by 4.3% and 3.6% supported by 

enhancement 1 and 2 respectively. In future, other improvement 

methods need to be investigated to improve the overall accuracy 

of the compilation test with different pathological signs. Future 

work will also add more new datasets from local hospitals. 
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