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ABSTRACT 
 

Response surface methodology-Box–Behnken design (RSM-BBD) was employed to optimize the methyl 

orange (MO) dye removal efficiency from aqueous solution by cross-linked chitosan-

tripolyphosphate/nano-titania composite (Chi-TPP/NTC). The influence of pertinent parameters, i.e. A: 

TiO2 loading (0- 50 %), B: dose (0.04-0.14 g), C: pH (4-10), and D: temperature (30-50 oC) on the MO 

removal efficiency were tested and optimized using RSM-BBD. The F-values of BBD model for MO 

removal efficiency was 93.4 (corresponding p-value < 0.0001). The results illustrated that the highest MO 

removal efficiency (87.27 %) was observed at the following conditions: TiO2 loading (50% TiO2), dose 

(0.09 g), pH 4.0, and temperature of 40 oC.   

 

Keywords: Chitosan; Tripolyphosphate; Nano-titania; Methyl orange dye; Response surface 

methodology; Adsorption 
 

 

INTRODUCTION 
 

Nowadays, synthesis of dyes and their used become in increasing with development different of industries 

such as textile, plastic, cosmetics, paper, leather and pharmaceuticals [1]. Variety of these dyes are 

discharged into water and wastewater; therefore, they can be caused serious risks on aquatic life through 

decreased sunlight penetration that affecting on the photosynthetic activity [2]. Furthermore, dyes can be 

caused various risks to human such as jaundice, tumors, allergies, cancer, dermatitis, skin irritation and 

genetic mutations [3]. Therefore, removal of dyes from different kinds of wastewater is necessary to protect 

environmental system and human health. 

 

There are several methods have been used for removal of dyes such as adsorption [4-6], membrane filtration 

[7], photocatalytic degradation [8]. Some of these technologies have limitations like less efficient, high 

working cost, generation of harmful substances and time-consuming [9]. One of the most effective methods 

used for removal of dyes is adsorption due to its environmentally friendly, simplicity of design and low-
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cost [10-12]. Furthermore, generation of harmful substances in the adsorption is reduced compared to others 

methods [13]. Response surface methodology (RSM) is considered one of the most methods applied to 

optimize of adsorption process due to reduce the cost and number of experiments as well as giving the 

information about interaction between the significant factors [14].    

 

One of the most common adsorbent applied for the adsorption is activated carbon due to its high efficiency 

but it's remain expensive. And for that, the researchers shifted towards natural biopolymers and waste 

materials as economical alternative adsorbents [15, 16]. Chitosan and chitosan derivatives have been wide 

applied as adsorbent due to its low-cost, high adsorption capacity and environmentally friendly [17-19]. 

Use of chitosan as adsorbent in wastewater treatment has some limitations such as low surface area, low 

mechanical strength, low chemical stability and hydrophobicity [20]. Generally, there are several methods 

can be utilized for improving the properties of chitosan such as chemical cross-linking reaction and 

combination of nanoparticles in matrix of chitosan. There are various compounds that utilized as cross-

linkers for chitosan such as glutaraldehyde (GLA), tripolyphosphate (TPP), epichlorohydrin {ECH), 

ethylene glycol diglycidyl ether (EGDE) and glyoxal (GLY) [21-24]. (TPP) is a widely used as ionic cross-

linker compound due to its non-toxic, multivalent polyanion, low cost and high solubility in water [25]. 

Interaction between chitosan and TPP can be occurred through ionic bonding between negative charges of 

TPP and the positively charged (-NH3
+) of chitosan molecules [26]. In recent years, chitosan-TPP 

nanoparticles have been prepared and applied in different areas such as wastewater treatment [27], drug 

delivery [28], medical [29] and food packaging [30].      

    

Titania (TiO2) particles have several good properties such as high surface area, low-cost, insolubility in 

water, nontoxicity, commercially available, environmental friendly and high chemical stability [31, 32]. 

These properties make titania particles is preferred to prepare chitosan/TiO2 composite and study of their 

applications. Recently, Chitosan/ titania has been synthesized and used in different applications such as 

wastewater treatment [33, 34], photocatalysis [35], antimicrobial activity [36], medical applications [37], 

drug delivery [38], tissue engineering applications [39] and biosensor [40].In this paper, Box-Behnken 

design (BBD) was applied to optimize the significant parameters for the dye removal (methyl orange, MO) 

from aqueous solution using hybrid crosslinked chitosan-tripolyphosphate/nano-titania composite (Chi-

TPP/NTC). Statistical and graphical of the BBD model were analyzed to obtain on optimum levels of the 

main effective parameters.  

 

 

EXPERIMENTAL 
 

Materials   

 

Chi (degree of deacetylation ≥75), nano-titania (type P-25), and TPP solution were supplied from Sigma–

Aldrich. MO dye (MW: 327.32, λmax = 464 nm) was obtained from ACROS, Organics. Hydrochloric acid 

(HCl), acetic acid (CH3COOH), and sodium hydroxide (NaOH) were supplied from R&M Chemicals. All 

the reagents and solutions were prepared using ultra-pure water.  

  

Preparation of tripolyphosphate-chitosan/nano-titania composites  

 

The chitosan-tripolyphosphate/nano-titania composite (Chi-TPP/NTC) was prepared based on the method 

descripted in our previous study [1]. Briefly, 1 g of Chi flakes was added to beaker containing 50 mL of 
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acetic acid solution (5% v/v) under vigorous stirring at room temperature for 24 h to dissolute of Chi flakes. 

The viscous solution of Chi was converted to beads form by injection of Chi viscous solution as drops using 

syringe needle (10 mL) into beaker containing 1000 mL of sodium hydroxide solution (0.5 M). The Chi 

beads were washed with distilled water to exclude the residual of sodium hydroxide. The crosslinking 

reaction step was performed by adding of 1% TPP (90 mL) to the Chi beads under slow stirring in water 

bath for 2 h at 40 °C. After that, the Chi-TPP beads were exhaustedly washed with distilled water. Then, 

the Chi-TPP was left in an oven for overnight at 80°C and subsequently ground to a uniform particle size 

(≤ 250 µm) for further study of  dye removal properties. A series of Chi-TPP/NTC were prepared by loading 

two different ratios of TiO2 particles with Chi (75% Chi:25% TiO2) and (50% Chi:50% TiO2) before adding 

to acetic acid solution. The crosslinking reaction step was performed by same the preparation procedure 

described above. The Chi-TPP/TNC composite with constant loading ration of (25% TiO2: 75% Chi) was 

labeled as Chi-TPP/NTC-25, while the Chi-TPP/NTC composite with constant loading ration of (50% TiO2: 

50% Chi) was labeled as Chi-TPP/TNC-50. The prepared composites were ground to a uniform particle 

size (≤ 250 µm) for further study of dye removal properties.  

 

Design of experiments 

 

In this work, BBD-RSM was utilized to optimize the effects of four parameters including TiO2 loading (A), 

dose (B), pH (C), and temperature on the removal of MO dye onto Chi-TPP/NTC composite surface. The 

Design Expert 11.0 (Stat-Ease, Minneapolis, USA) was employed for designing of removal tests and 

statistical analysis of the empirical data. Table 1 displays levels of independent parameters utilized along 

with their coded values.  

 

 
Table 1: Coded and actual variables and their levels 

 

Coded variables Actual variables Level 1 (-1) Level 2 (0) Level 3 (+1) 

A TiO2 loading (%) 0 25 50 

B Adsorbent dose (g) 0.04 0.09 0.14 

C pH 4 7 10 

D Temperature (℃) 30 40 50 

 

 

The quadratic polynomial equation was employed to predict the dye removal efficiency and analyze the 

experimental data as follows (1). 

 

𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖

 

 

+ ∑ 𝛽𝑖𝑖𝑋𝑖
2 +

 

 

∑ ∑ 𝛽𝑖𝑗𝑋𝑖
 𝑋𝑗             (1)

 

 

 

 

 

 
where, Y is the predicted response for MO dye removal (%); Xi and Xj are coded the independent variables; β0 is the 

constant; βi, βii and βij are coefficients of linear, quadratic, and interactive coefficient of input independent variables, 

respectively. 
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According to BBD, 29 experiments (runs) with three level, four factors and five center points are 

implemented to optimize and investigate effects of the four parameters i.e. A: TiO2 loading (0-50 %), B: 

dose (0.04-0.14 g), C: pH (4-10), and D: temperature (30-50 oC), on the MO dye removal (%) by Chi-

TPP/NTC composite. BBD matrix and obtained response results of MO dye removal (%) are presented in 

Table 2. A certain amount of adsorbent was taken in a set of Erlenmeyer flasks (125 mL) containing 50 mL 

of MO dye solution. These flasks were placed in water bath (WNB7-45, Memmert, Germany) and agitated 

at fixed shaking speed of 100 strokes/min. Then, the adsorbents were excluded from MO dye solutions 

using syringe filter (0.45 µm). Finally, the MO dye concentrations were measured by UV-Vis 

Spectrophotometer (HACH DR 2800) at λmax of 464 nm. The percentage of MO dye removal (DR %) was 

measured as follows (2):   

𝐷𝑅 % =
(𝐶𝑜 − 𝐶𝑒)

𝐶𝑜

 × 100                       (2) 

 
Where Co (mg/L) and Ce (mg/L) represent the initial and equilibrium MO concentrations, respectively. 

 

 
Table 2: The 4-factors BBD matrix and experimental data for MO removal efficiency 

 

Run A: TiO2 loading (%) B: Adsorbent dose (g) C: pH D: T (℃) Dye removal (%) 

1 0 0.04 7 40 13.4 

2 50 0.04 7 40 25.9 

3 0 0.14 7 40 26.8 

4 50 0.14 7 40 58.7 

5 25 0.09 4 30 57.8 

6 25 0.09 10 30 14.8 

7 25 0.09 4 50 63.5 

8 25 0.09 10 50 18.1 

9 0 0.09 7 30 19.5 

10 50 0.09 7 30 48.3 

11 0 0.09 7 50 22.9 

12 50 0.09 7 50 53.8 

13 25 0.04 4 40 39.5 

14 25 0.14 4 40 68 

15 25 0.04 10 40 10.6 

16 25 0.14 10 40 21.9 

17 0 0.09 4 40 33 

18 50 0.09 4 40 87.3 

19 0 0.09 10 40 11.7 
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20 50 0.09 10 40 21 

21 25 0.04 7 30 17.3 

22 25 0.14 7 30 37.5 

23 25 0.04 7 50 20.6 

24 25 0.14 7 50 39.4 

25 25 0.09 7 40 32.5 

26 25 0.09 7 40 32.6 

27 25 0.09 7 40 33.5 

28 25 0.09 7 40 33.7 

29 25 0.09 7 40 33.4 

 

 

RESULTS AND DISCUSSION 
 

Response surface methodology  

 

Box-Behnken design 

 

The solo and interactive effects of the key parameters such as TiO2 loading, dose, pH, and temperature on 

the MO dye removal efficiency were evaluated by BBD-RSM. The relationship of the quadratic polynomial 

equation between examined parameters and the response (MO dye removal as response) was achieved and 

showed in the following Eq. (3):      

 
MO removal (%) =  +33.14 + 13.97A + 10.44B − 20.94C + 1.94D + 4.85AB − 11.25AC

− 4.22BC − 3.79B2 +  4.67C2                                   (3)  

 

where A, B, C and D were the coded levels of TiO2 loading, adsorbent dose, pH and temperature, respectively.  

 

According to the coefficients of Eq. 3, the parameters including TiO2 loading, adsorbent dose, and 

temperature demonstrate a positive impact on MO removal (%) efficiency, while pH had a negative effect 

[41]. A positive sign in Eq. 3 reveals a synergistic effect of the factors, while a negative sign reveals an 

antagonistic effect of the factors [42].  
 

Effect of input parameters    

 

The perturbation plot was utilized for investigating the effect of four input parameters simultaneously on 

the MO removal efficiency as illustrated in Figure 1. As can be seen, there are four key factors responsible 

for obtaining maximum MO removal efficiency. A sharp curvature for the TiO2 loading (parameter A) point 

to that the MO removal efficiency was susceptible to this parameter. Generally, as adsorbent dose 

(parameter B) increase the MO removal efficiency increases as well. A relatively steep curvature in pH 

(parameter C) suggests that the MO removal efficiency was sensitive to this parameter. The curve of 

temperature (parameter D) reveals sensitivity of the response in working temperature levels.    
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Analysis of variance (ANOVA) 

 

The statistical analysis of the experimental data for the removal MO dye was done using analysis of variance 

(ANOVA) as shown in Table 3. According to Table 3, the F-value of BBD model and their corresponding 

p-value are 93.4 and < 0.0001, respectively. This result reveals that the BBD model for the removal MO 

dye was statistically considerable [43]. Moreover, the coefficient of determination (R2) value was 0.98, 

evincing the high correlation between actual and expected MO dye removal values. In general, the terms 

of BBD model are considered statistically significant when the p-value is less than 0.05 (Prob > F < 0.0500) 

under selected conditions [44]. Therefore, the BBD model terms of A, B, C, D, AB, AC, B2, and C2 were 

considered statistically significant on the removal MO dye.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Perturbation plots for the dye removal efficiency of MO. (A) TiO2 loading,  

(B) adsorbent dose, (C) pH, and (D) temperature 

 

 
Table 3: Analysis of variance (ANOVA) of the response surface quadratic model for MO removal efficiency 

 

Source 
Sum of 

Squares 
Df 

Mean 

Square 
F-value p-value Remarks 

Model 9933.84 14 709.56 93.40 < 0.0001 S 

A-TiO2 loading 2341.09 1 2341.09 308.15 < 0.0001 S 

B-Adsorbent dose 1308.97 1 1308.97 172.29 < 0.0001 S 
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C-pH 5261.80 1 5261.80 692.58 < 0.0001 S 

D-Temp. 44.93 1 44.93 5.91 0.0290 S 

AB 94.09 1 94.09 12.38 0.0034 S 

AC 506.03 1 506.03 66.61 < 0.0001 S 

AD 1.02 1 1.02 0.1343 0.7195 IS 

BC 71.06 1 71.06 9.35 0.0085 S 

BD 0.5112 1 0.5112 0.0673 0.7991 IS 

CD 1.48 1 1.48 0.1943 0.6661 IS 

A2 16.40 1 16.40 2.16 0.1639 IS 

B2 93.18 1 93.18 12.26 0.0035 S 

C2 141.23 1 141.23 18.59 0.0007 S 

D2 1.69 1 1.69 0.2230 0.6440 IS 

Residual 106.36 14 7.60    

Cor Total 10040.20 28     

S: Significant; IS: Insignificant   

 

 

Graphical methods can be also employed to validate the BBD model through evaluation the nature of 

residuals distribution and correlation between actual and expected MO dye removal values. The normal 

probability of the residuals in the BBD model can be seen in Figure 2. It can be noticed from Figure 2 that 

the points demonstrate obvious close to a straight line, indicating the ideal normal distributions and 

independence of the residuals. The perfect normal distributions of the residuals indicate the accuracy of the 

assumptions, as well as the independence of the residuals. Plot of the residuals values versus the run number 

of experiments shows a random distribution around zero indicating the validity of the model [45] as shown 

in Figure 3.  

 

The relationship between the actual and expected MO dye removal values was presented in Figure 4. The 

statistical validation of the BBD model can be concluded from Figure 4, where the actual and expected 

values are close to each other [46, 47]. This close correlation between the actual and predicted values of 

percentage dye removal was also exhibited by the values of R2 (0.98) and adjusted R2 (0.97) which are 

observed to be close to one. 

 

Three-dimensional (3D) response surfaces 

 

Three-dimensional (3D) response surfaces for the MO removal (%) were estimated according to the 

quadratic model for understanding the responsive relationships between independent parameters and MO 

removal (%) efficiency. The significant interaction between each two input variables was investigated. The 

AB interaction was significant (p-value = 0.0034) on MO removal efficiency. Meanwhile, the other 

parameters (pH 7, and temperature at 40 oC) were kept constant. The 3-D surfaces and 2-D contours plots 

for AB interaction are presented in Figure 5a and Figure 5b respectively. Generally, it was found that the 

MO removal efficiency increases by increasing the TiO2 loading and adsorbent dose.  
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Figure 2: Normal probability plot of residuals 

for MO removal efficiency. 

 

Figure 3: Plot of the residuals values versus  

run number of experiments. 

 

 

 

 
 

Figure 4: Plot of the relationship between the predicted and actual values of MO removal (%). 
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(a) (b) 

 

 
 

Figure 5: (a) 3D response surface plot and; (b) contour plot for MO removal efficiency showing interaction between 

TiO2 loading (A) and adsorbent dose (B). 
 

 

The remarkable improvement in MO removal efficiency (from 10.25% to 87.27%) with increasing the 

loading of TiO2 nanoparticles into crosslinked TPP-chitosan matrix up to 50% chitosan: 50% nano TiO2. 

In fact, loading of TiO2 nanoparticles into polymeric matrix of Chi-TPP will enhance the surface area of 

Chi-TPP/NTC-50 and introduce new types of hydroxyl groups on the surface Chi-TPP/NTC-50. The 

terminal hydroxyl and bridging hydroxyl groups on the surface of Chi-TPP/NTC-50 will be protonated and 

converted to the positive oxonium ions especially in acidic aqueous environment [48, 49].  

 

On the other hand, the sulfonate group (-SO3H) in the molecular structure of the MO can be converted in 

aqueous medium into active negative sulfonate group (-SO3
-). Consequently, a strong electrostatic 

(columbic) attraction between positively charged oxonium ions on the surface of Chi-TPP/NTC-50 with 

negatively charged sulfonate group of MO. Regarding adsorbent dose (B), it is found that the MO removal 

efficiency increases from 10.25% to 87.27% by increasing Chi-TPP/NTC-50 dose up to 0.09 g/ 50 mL, 

which can be ascribed to the greater availability of the exchangeable adsorption sites.   

 

The interaction effect of TiO2 loading (A) and solution pH (C) was significant on MO removal efficiency 

(p-vaule < 0.0001) as recorded in Table 3. Meanwhile, the other parameters (dose of 0.09 g, and temperature 

at 40 oC) were kept constant. The 3-D surfaces and 2-D contours plots for AC interaction are presented in 

Figure 6a and 6b, respectively.   

 

From Figure 6, it is observed that the MO removal efficiency increases from 10.25 % to 87.27 % by 

increasing the maxing ration with TiO2 nanoparticles from 0% to 50 %, and by decreasing the solution pH 

from 10 to 4, which can be attributed to the attraction between positively charged oxonium ions on the 

surface of Chi-TPP/NTC-50 with negatively charged sulfonate group of MO. It was evident that the 
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maximum MO removal was observed at pH 4, and gradual decreases in the dyes removal can be observed 

for both dyes by increasing the pH value towards basic environment.  

 

 
(a) (b) 

 

 
 

Figure 6: (a) 3D response surface plot; (b) contour plot (b) of MO removal efficiency showing interaction between 

TiO2 loading (A) and pH (C). 
 

 

It was also found that the BC interaction was significant (p-value = 0.0085) on MO removal efficiency. 

Meanwhile, the other parameters (TiO2 loading 25 %, and temperature at 40 oC) were kept constant. The 3-

D surfaces and 2-D contours plots for BC interaction are presented in Figure 7a and 7b, respectively. A 

positive charge of the Chi-TPP/NTC-50 can be achieved at pH 4, preferring uptake of negatively charged 

species such as MO. As a result, enhanced electrostatic attractions occur with surface functional groups of 

positively charged of Chi-TPP/NTC-50 with anionic MO dye denoted in Eq. 4:  

 

 
 Chi − TPP/NTC − NH3

+   +  MO − SO3
−   ⟷  Chi − TPP/NTC  − NH3

+ …  SO3
− − MO        (4)  

 

 

CONCLUSIONS 
 

Response surface methodology-Box–Behnken design (RSM-BBD) was successfully utilized as a tool 

statistical for optimizing the MO dye removal from aqueous solution using crosslinked chitosan composite. 

The findings demonstrate that the highest MO dye removal (87.27 %) was observed by the following 

significant interactions: AB, AC and BC. The best conditions of the MO dye removal were TiO2 loading 

(50 %), adsorbent dose (0.09g), pH (4), and temperature (40 oC). 
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(a) (b) 

 

 

 
 Figure 7: (a) 3D response surface plot, and (b) contour plot of MO removal efficiency showing interaction between 

adsorbent dose (B) and pH (C). 
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