EFFECT OF HOLMING ADDITION ON THE ELECTRICAL TRANSPORT PROPERTIES OF POLYCRISTALINE

lucino mangan ieg

NG WASHING ET LUP

BACHELOR OF SCIENCE (Hons.) PHYSICS FACUTY OF APPLIED SCIENCE UNIVERSITE DEXNOLOGE MARA

MAY 2009

This Final Year Project Report entitled "The Effect of Ho addition on electrical transport properties of LCMO" was submitted by Noorhasimah Bt Yeop, in partial fulfillment of the requirements for the Degree of Bachelor Science (Hons) Physics, in the Faculty of Applied Science, and was approved by

Cik Zakian Mohamed

Supervisor Faculty of Applied Science Universiti Teknologi MARA 40450 Shah Alam Selangor

Prof. Madya Dr Yusof Theeran **Project Coordinator** Faculty of Applied Science Universiti Teknologi MARA 40450 Shah Alam Selangor

Dr Ab Malik Marwan Ali Head of Programme Faculty of Applied Science Universiti Teknologi MARA 40450 Shah Alam Selangor

Date: _____18/5/0G

TABLE OF CONTENTS

ACKNOWLEGEMENT		ii
TABLE OF CONTENTS		ifi
LIST OF FIGURE		V
LIST OF TABLE		vi
LIST OF ABBREVIATIONS		viii
ABSTRACT		ix
ABSTRAK		X
CHAPTER 1 INTRODUCTION		
1.1	Background	1
1.2	Problem statement	8
1.3	Significance of study	9
1.4	Objectives of study	9
CHAPTER 2 LITERATURE REVIEW		
2.1	Introduction	10
2.2	Electrical and magnetic properties	13
2.3	Fitting	15
CHAPTER 3 METHODOLOGY		
3.1	Materials	17
	3.1.1 Chemicals	17
	3.1.2 Apparatus	17
3.2	Sample Characterization methods	18

ABSTRACT

This research is done to measure the "Effect of Holmium addition on the electrical transport properties of polycrystalline LCMO manganite". The different value of Ho which is at x = 0.00, 0.15, 0.30 was added to LCMO and grind it to make them mixed together. After that the entire sample was calcine at 900°C for 12 hours at the rate 3°C per minute. Then the sample was press to make it into a pellet and sinter at 1300°C. Then this sample was measure by using instruments such as four point probe and scanning electron microscope. I found that, the electrical resistivity as a function of temperature at zero field, $\rho(0,T)$ for $(La_{1-x}Ho_x)_{0.67}Ca_{0.33}MnO_3$ for x = 0.00, 0.15, 0.30 show semiconducting behavior above Tp and metallic behavior below Tp by usng four point probe. With increasing Ho doping, the metal-insulator transition temperature Tp shift to lower temperature and the resisitivity is increase which is for x = 0.00, TM is 256 K with resistivity value 1.48 m Ω .cm. While for x = 0.15, TM was observed at 152 K with resistivity value 66.5 m Ω .cm. For sample x = 0.30, T_{MI} is 140 K with resistivity value 214 m Ω .cm. the transport mechanism also can be explained by Double Exchange mechanism, Jahn Teller effect.and Jahn Teller polaron. The investigation of the grain size and examination of the composition of sample was done by using a Scanning electron microscope. It found that the Ho is coexisting with the pure LCMO. When the adding of Holmium is increasing, the brightness which is representing the Holmium is more clear to seen.

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The adding of Ho into a pure LCMO can decrease the uses of magnetic in our material. It is because of Ho is a nonmagnetic iron and have a high melting temperature and high resistance. The aim of Ho adding in this composite is to introduce nonmagnetic phases in the surface or interface of LCMO grains and to study the effects on the electrical transport properties and magnetic properties.

The phase diagram of La_{1-x}Ca_xMnO₃ is indeed very rich and interesting as shown in Figure 1.1 as a function of Ca concentration x and temperature . At low doping levels, the lattice structure in ground state is orthorhombic, and the magnetic structure is type-A anti ferromagnetic (P. Schiffer et. al, 1995) This magnetic structure can be considered as ferromagnetic planes coupled anti ferromagnetically. The proposed canted anti ferromagnetism (CAF) is nowadays considered as coming from phase separation at nano-meter scales (E. Dagotto et. al, 2003). It is very interesting to note the coexistence of the ferromagnetic and insulating phases (FI) between 0.1 and 0.17. At rational doping of x = 3/8, the highest Curie temperature (~ 260 K) is observed. The 50% doping presents one