PREPARATION AND ELECTRICAL CHARACTERIZATION BY IMPEDANCE SPECTROSCOPY OF PVC+LiCF₃SO₃+TiO₂ NANOCOMPOSITE POLYMER ELECTROLYTES

NORHAFIZA BINTI MUDA

BACHELOR OF SCIENCE (Hons.) PHYSICS FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

MAY 2007

ACKNOWLEDGEMENT

Alhamdulillah, I am highly gratitude to Allah S.W.T, as permission given, my thesis which entitle 'Preparation and Characterization by Impedance Spectroscopy of PVC-LiCF₃SO₃-TiO₂ Nanocomposite Polymer Electrolytes' has successfully submitted as planned.

Firstly, I would like to express my special thanks to my supervisor, Puan Asiah Mohd Nor, who has given her trust and confident to do my thesis. She always guides and gives advice upon numerous drafts of this thesis. These specials thank also goes to Dr. Ri Hanum Yahaya Subban as co-supervisor. She always gives advices, explanation and encouragement while I'm doing my thesis.

I would also like to express my real appreciation and thanks especially to Norizan Mohd Noor and Nor Haslizaaini Basri for their good cooperation and support in doing this thesis. Last but not least, special appreciation dedicated to my family that gives continuous support and encouragement. Thank you.

iii

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	x

A

CHAPTER

1.	INTRODUCTION	1
	1.0 Introduction	1
	1.1 Problem statement	2
	1.2 Objectives	2
	1.3 Scope of works	2
	1.4 Aim of the present work	3
2.	LITERATURE REVIEW	4
	2.0 Introduction	4
	2.1 Polymer electrolytes	5

•

ABSTRACT

Nanocomposite polymer electrolyte were prepared by combining PVC as a host polymer, lithium triflate, LiCF₃SO₃ as doping salt and titanium dioxide, TiO₂ as filler with a different ratio. All the films were prepared by solution casting technique. The ionic conductivity of the films of at room temperature was determined by Impedance Spectroscopy technique. The ionic conductivity of pure PVC was 1.04×10^{-10} Scm⁻¹. The highest ionic conductivity of PVC + LiCF₃SO₃ films determined was 1.017×10^{-7} Scm⁻¹ for 40 wt % of LiCF₃SO₃. This ratio was used further for the preparation of PVC + LiCF₃SO₃ + TiO₂ films by adding different ratio of TiO₂ filler. The highest ionic conductivity of nanocomposite polymer electrolyte increased from 10^{-7} to 10^{-5} Scm⁻¹. The ionic conductivity of PVC significantly increased by the addition of salt and filler.

CHAPTER 1

INTRODUCTION

1.0 Introduction

The general concept of nanocomposite polymer electrolytes based on inorganic fillers which are nanosize will be the focus of this work. A polymer electrolyte is a thin film that consists of a polymer host dissolved with salt. It has an important role in solid state ionic because of its unique properties such as ease of fabrication, improved safety, and smaller possibility of electrolyte leakage. The inorganic filler used in this study is chosen to be nanosize because it has several advantageous characteristics such as higher surface area of filler (Stephan et al., 2000), increased mobility, increase in the conductivity values of polymer electrolytes with nanofiller incorporated in them and also increase in intermolecular interaction in the polymer matrix (Shanmukaraj et al., 2005).

In this study, PVC is used as the host while $LiCF_3SO_3$ as the inorganic salt and TiO_2 as the filler. PVC is chosen as the host because of its low cost, versatility and its abundance since it is the material of choice for dozens of industries such as health care, communication, aerospace, automotive, retailing, textile and construction. TiO_2 is chosen as the filler because it has interesting chemical, electrical and optical properties.