PROPERTIES OF NANOSTRUCTURE COPPER (I) IODIDE THIN FILM FOR DYE-SENSITIZED SOLAR CELL

MOHAMMED YUSRI B. SHARUDIN

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

MEI 2010

ACKNOWLEDGEMENTS

In the name of Allah, the Beneficent and the Merciful

It is most humbleness and gratitude that this work is finally completed with His blessing. A lot of experiences gained in the documentation.

Firstly, I am grateful to Allah S.W.T the Beneficent, The Merciful, for conferring me the strength and patience to accomplish this thesis successful completed on the time.

I wish to express my sincerely thanks to my project supervisor Mr. Uzer Mohd Noor and my co-supervisor Assoc. Prof. Dr. Mohamad Rusop Mahmood and also my senior En. Ayib Rosdi b. Zainun whose has given me kind guidance, constructive suggestion and also continuous encouragement in a very supportive manner during preparation of this final year project.

Special thanks to my family who gave me the most-needed support during my study, lecturers, friends, and everyone who have lends a hand and helped me out in completing this project especially laboratory assistants, research assistants (R.A) and master students in Nanotechnology Laboratory who are always there to assist me with full commitment.

Finally, I wish to express my sincere gratitude to all those, who in one way or another, have assisted me in the preparation of this thesis.

Mohammed Yusri b. Sharudin Universiti Teknologi MARA April 2010

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	x.

, K

CHAPTER 1 INTRODUCTION

.

1.1 Nanostructure thin film	1
1.2 Copper (I) Iodide	3
1.2.1 Chemical properties	4
1.2.2 Physical properties	5
1.3 Application of Dye-sensitized solar cell	6
1.4 Research Objective	8
1.5 Problem Statement	8
1.6 Scope and Limitation of study	9
1.7 Significant of study	10

CHAPTER 2 LITERATURE REVIEW

11
12
13
14
15

CHAPTER 3 METHODOLOGY

3.1 Gen	eral information	16
3.1.1	Flow chart for experimental work	16
3.1.2	Preparation of glass substrate	18
3.1.3	Solution preparation	19
3.1.4	CuI thin film preparation	21
3.1.5	Annealing Temperature	22
3.2 Cha	racterization of Copper (I) Iodide thin film	22
3.2.1	Surface Morphology	23
3.2.2	Optical properties	23
3.2.3	Current Voltage Measurement (I-V)	24

ABSTRACT

PROPERTIES OF NANOSTRUCTURE COPPER (I) IODIDE THIN FILM FOR DYE-SENSITIZED SOLAR CELL

This report presents the research on properties of nanostructure Copper (I) Iodide thin films for Dye-Sensitized Solar cell prepared by using sol-gel method at different molarities. The precursor used was chemically pure Copper (I) Iodide powder mixer with Acetonitrile which act as solvent at different molarities such as 0.01 M, 0.03 M and 0.05 M. The CuI thin films were deposited on the substrates by using spin coating technique. The thin films were also prepared at different annealing temperature that is $T = 50^{\circ}$ C, 75° C, 100° C, 125° C and 150° C. The influence of molarities and annealing temperature on the surface morphology, the electrical and the optical properties of the thin films was characterized by using Field Emission Scanning Electron Microscopy (FESEM), solar simulator I-V measurement and UV-VIS spectroscopy respectively. For electrical properties, it was found that resistivity increased when the surface of the CuI thin films decreased. For the surface morphology, the different molarities and annealing temperatures make the CuI particle increased in size, recombined and formed denser film.

Keyword: Cul thin films; Sol-gel; Electrical Properties; Surface Morphology; Optical properties

CHAPTER 1

INTRODUCTION

1.1 Nanostructure thin film

A nanostructure is an object of intermediate size between molecular and microscopic (micrometer-sized) structures. In describing nanostructures it is necessary to differentiate between the numbers of dimensions on the nanoscale

[1].

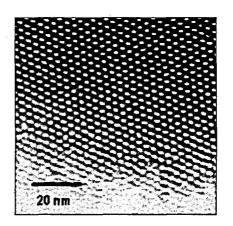


Figure 1.1: Nanostructured particles

Wide band gap nanostructured materials, such as nanowires, nanobelts, and nanorods have received high interest in the recent decade, due to their morphology-related properties, for their potential in building novel functional nanometer-scaled electronic, optoelectronic, electrochemical, and sensor