EFFECT OF TIO₂ NANOFILLER ON PVA/PVP BASED ALKALINE SOLID POLYMER ELECTROLYTE

NOOR IZZATI ZARAWI

BACHELOR OF SCIENCE (Hons.) PHYSICS FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

NOVEMBER 2008

۰**ę**,

ACKNOWLEDGEMENT

Alhamdulillah thanks to ALLAH, the almighty God that give me the opportunity to finish this research proposal within the given time.

First of all, thanks to my supervisor, Dr. Muhd Zu Azhan Yahya and co-supervisor, En. Ab Malik Marwan Ali for their continuous advices, comment, guidance and encouragements during, before and after the completion of this final project report.

Special thanks to PM Md. Yusof Theeran as my final year project coordinator for your information, and advice from the beginning, during preparation and the end of my final year project report presentation. And not forgotten to all the master's students for helping me to handle instrument during the experiment is done.

I also want to thanks to my family, who always support me in whatever i do. A deep thankful also to my fellow friends for their supporting and kind assistance that make my work easier. Also thanks to the UiTM management who provide a good facilities that lead to my successful project and produced excellent graduates.

Lastly thanks to anyone that involve in this project, directly or indirectly. Thank you very much.

Noor Izzati Binti Zarawi

TABLE OF CONTENTS

		Page
ACKNOWLEDGEMENTS		iii
TABLE OF CONTENTS		iv
LIST OF TABLES		vi
LIST OF FIGURES		vii
LIST OF ABBREVIATIONS	À*	xi
ABSTRACT		xii
ABSTRAK		

ţ

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem statement	2
1.3	Objective of study	2
1.4	Significance of study	3
1.5	Aim of the work	4

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction		5
2.2	Solid Polymer electrolyte (SPE)		6
2.3	Poly(vinylalcohol) (PVA)		8
2.4	Poly(vinylpyrrolidone) (PVP)		9
2.5	Alkaline Solid Polymer electrolyte (ASPE)		10
2.6	Nanofiller- Titanium(IV)oxide (TiO ₂)		
2.7	Metho	d to enhance ionic conductivity	13
	2.7.1	Polymer blend	14
	2.7.2	Plasticization	15
	2.7.3	Addition of nanofiller	15
2.8	Model to explain ionic conduction mechanism		16
	2.8.1	Overlapping large polaron-tunneling (OLPT) model	16
	2.8.2	Quantum mechanical tunneling (QMT) model	17
	2.8.3	Correlated barrier-hoping (CBH) model and	17
		Small poleron (SP) model	
2.9	Review on Battery studies		17
	2.9.1	Zinc/Alkaline/Manganese Dioxide Battery	17
	2.9.2	Other miniature battery	19
	2.9.3	Experimental study on alkaline Zn/MnO ₂ Batteries	20

-

CHAPTER 3 RESEARCH METHODOLOGY					
3.1	Materials	22			
3.2	3.2 Methods				
3.3	Ionic conductivity studies	26			
	3.3.1 Impedance Spectroscopy	26			
	3.3.2 Transferences Number	27			
	3.3.3 X-Ray diffraction(XRD)	27			
3.4 Electrical conductivity measurement		28			
СНА	PTER 4 RESULTS AND DISCUSSIONS				
4.1	Introduction	30			
4.2	Conductivity studies 3				
4.3	Conductivity dependence on TiO_2 concentration 33				
4.4	Conductivity - Temperature Dependence 36				
4.5	1.5 Dielectric study at room temperature				
4.6	Dielectric study at various temperatures	41			
4.7	Electrical modulus at various temperatures	43			
4.8	AC Conductivity	46			
СНА	APTER 5 CONCLUSION AND RECOMME	SNDATIONS 51			

53

57

REFERENCES CURRICULUM VITAE

ABSTRACT

EFFECT OF TiO₂ NANOFILLER ON PVA/PVP BASED ALKALINE SOLID POLYMER ELECTROLYTE

Alkaline solid polymer electrolyte (ASPBE) containing a blend of poly(vinylalcohol) (PVA) and poly(vinylpyrrolidone) (PVP), potassium hydroxide (KOH) as an ionic dopant as well as titanium(IV)dioxide (TiO₂) as a nanofiller were prepared by solution casting technique. The concentration ratios of the polymer blend, ionic dopant and nanofiller were varied systematically. The conductivity was studied using impedance spectroscopy in order to investigate ionic conduction in composite PVA/PVP-KOH + TiO₂ electrolyte systems. The conductivity for composite samples with selected composition from 4 wt.%, 6 wt.%, 8 wt.% and 9 wt.% of TiO₂ were determined at various temperatures. The 8 wt.% composition of TiO₂ nanofiller sample gave the highest conductivity of 1.43 x 10⁻¹ S/cm at room temperature. The conductivitytemperature dependence of the entire samples obeyed Arrehenius rule implying that a hoping mechanism of the in charge carrier is taken place. The activation energy, E_a of 0.3144 eV was obtained for the highest conducting sample. Electrical properties were than further characterized on the data collected from impedance studies. The conduction mechanism of the charge carrier followed quantum mechanical tunneling (QMT) model. This conduction mechanism apparently occurred according to ion hopping mechanisms.