

DIPLOMA IN MECHANICAL ENGINEERING

TITLE :

FINAL YEAR PROJECT REPORT

PROJECT :

LEARNING KIT (DYNAMIC - GENERAL PLANE MOTION)

GROUP : J4EM1105B / GROUP 1

SUPERVISOR : SIR HASZEME B. ABU KASIM

LECTURER : MISS LIYANA BINTI ROSLAN

No.	STUDENT'S NAME	MATRIX NO.
1.	MOHAMAD NOR FAEZ B. MUHAMAD	2015544077
2.	NUR AZIZAH BT. MOHAMAD KASIM	2015744313
3.	MUHAMMAD AMIR B. DAUD	2015977595
4.	MUHAMMAD HAFIZ B. ROHAIMI	2015981473

ACKNOWLEDGEMENT

Firstly, we wish to thank God for giving me the opportunity to embark on our Diploma and for completing this long and challenging journey successfully. Our gratitude and thanks go to our supervisor Sir Haszeme bin Abu Kasim.

Our appreciation goes to the MEC322 lecturer and the assistant engineer of the UiTM Pasir Gudang who provided the facilities and assistance during the making. Special thanks to all the student who is helping us with this project.

ABSTRACT

DOTRun is a learning kit design to help student to understand the concept of general planar motion which is a sub-topic in Dynamic subjects. DOTRun which stands for dynamic on the run is easy to be brought anywhere and it helps lecturer to bring it to classes with ease. This learning kit is a result of survey conducted to student regarding the failure rate among the student regarding the courses they are learning for the Diploma of Mechanical Engineering in UiTM Pasir Gudang.

TABLE OF CONTENTS

	age
CHAPTER 1 : INTRODUCTION	
CHAPTER 2 : DESIGN PROBLEM DEFINITION	
2.1 Market Analysis	8
2.1.1 General Need For A Product	8
2.1.2 Description and Estimation of Market Size	10
2.1.3 Competitive Products and Benchmarking	13
2.1.4 Opportunity For Competitive Advantage	16
2.2 Physics of the Artifact	20
2.3 Criteria For Selecting Final Design Concept	23
2.4 Final Product Design Specification	26
CHAPTER 3 : CONCEPT GENERATION AND SELECTION	
3.1 Feasible Concept	30
3.1.1 Morphological Chart	31
3.1.2 Concept 1	34
3.1.3 Concept 2	36
3.1.4 Concept 3	38
3.1.5 Concept 4	40
3.1.6 Concept 5	42
3.2 Selection of Final Concept	44
3.2.1 Pugh Chart	45
3.2.2 Discussion	47

CHAPTER 4 : EMBODIMENT DESIGN

4.1 Final Design Concept	49	
4.2 Product Architecture	55	
4.3 Configuration Design	59	
4.3.1 List of Parts	59	
4.3.2 Details Standard Part Selection	63	
4.4 Parametric Design For Custom Part	69	
CHAPTER 5 : DETAIL DESIGN		
5.1 Engineering Drawing Set	73	
5.1.1 Detail Drawing of Manufactured Parts	73	
5.1.2 Assembly Drawings	108	
5.1.3 Exploded Drawings	110	
5.2 Bill of Material and Costing	112	
CHAPTER 6 : PROTOTYPING AND TESTING		
6.1 Fabrication of Prototype	114	
6.2 Testing of Design : Mathematical Models, Simulations and Prototype	120	
CHAPTER 7 : CONCLUSIONS AND RECOMMENDATION		
7.1 Conclusion On Designed Product	122	
7.2 Future Works	123	
CHAPTER 8 · REFLECTION ON THE DESIGN PROCESS		
8.1 Deflection on a Design Drosses		
	124	
8.2 Strength	124	
8.3 Weakiness	126	
REFERENCES		
APPENDICES		
	1	