Universiti Teknologi MARA

A STUDY OF ONSET ON BÈNARD-MARANGONI CONVECTION WITH INTERNAL HEAT GENERATION

Syahila Binti Azman

Report submitted in fulfilment of the requirements for Bachelor of Science (Hons.) Management Mathematics Faculty of Computer and Mathematical Sciences

July 2020

STUDENT'S DECLARATION

I certify that this report and the research to which it refers are the product of my own work and that any ideas or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

Apple

SYAHILA BINTI AZMAN

2017782571

JUNE 25, 2020

ABSTRACT

A study of fluid mechanics in convection may bring significant result in daily life especially in industrial sector such as crystal craft industry, welding, pump and others. In this research, classical linear stability theory was used to investigate the onset of Bénard-Marangoni convection in a fluid layer with a flat surface heated from below influenced by internal heat generation factors when the non-dimensional Rayleigh number and Marangoni number are linearly dependent. This study uses a combination of analytical and numerical approaches to obtain, for the first time, a detailed description of the marginal stability curves for the onset of steady and overstable convection, which significantly increases the numerical results of previous researchers. The research performs asymptotic analysis of the oscillatory Bénard-Marangoni within the limits of both long and short wavelength instability and presents the results of analytical calculations illustrating the effects of different problem parameters on the marginal curves.

Keywords: Bénard-Marangoni Convection, internal heat

TABLE OF CONTENTS

CONTENTS

PAGE

SUPERVISOR'S APPROVAL	ii
DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
LIST OF TABLES	ix
LIST OF SYMBOLS	Х

CHAPTER ONE: INTRODUCTION

1.1	Background of the Study	1		
	1.1.1 Convection	1		
	1.1.2 Forced convection	1		
	1.1.3 Natural convection	2		
	1.1.4 Control over convection phenomenon	5		
	1.1.5 Convection in the fluid layer	6		
1.2	Problem Statement	8		
1.3	Objective of the Study			
1.4	Significance of the Study			
1.5	Scope of the Study			

CHAPTER TWO: LITERATURE REVIEW

2.1	Past research		
	2.1.1	Bénard Experiments	10
	2.1.2	Block Experiments	11
2.2	Theoretical studies		

CHAPTER THREE: MATHEMATICAL MODELLING

3.1	Problem Formulation 14				
3.2	Governing Equations				
	3.2.1	Continuity Equation	15		
	3.2.2	Momentum Equation	16		
	3.2.3	Energy Equation	16		
	3.2.4	Bottom surface boundary conditions	17		
	3.2.5	Free surface boundary conditions	17		
	3.2.6	Stationary Condition	18		
3.3	Linear	Equation	20		
	3.3.1	Momentum Equation	20		
	3.3.2	Energy Equation	22		
	3.3.3	Bottom surface boundary conditions	22		
	3.3.4	Free surface boundary conditions	23		
3.4	3.4 Normal Mode Analysis				
	3.4.1	Momentum Equation	28		
	3.4.2	Energy Equation	28		
	3.4.3	Bottom surface boundary conditions	29		
	3.4.4	Free surface boundary conditions	29		
3.5	Dimens	sionless Linear Equation	33		
CHAPTER F	OUR: H	RESULTS AND DISCUSSIONS			
4.1	Main C	Order Solutions $O(a^{-1/2})$	34		
4.2	First Order Solutions $O(a^{-1})$				
36					
4.3	Second	I-Order Solutions $O(a^{-3/2})$	37		
4.4	Higher	-Order Solutions	38		
CHAPTER F	TIVE: C	ONCLUSIONS AND RECOMMENDATIONS	43		
REFERENC	ES		44		

APPENDICES