Universiti Teknologi MARA

Susceptible-Exposed-Infected-Recovered (SEIR) Model for Dengue Outbreak in Malaysia

Rosizatun Najlin Binti Rosli

Report submitted in fulfillment of the requirements for Bachelor of Science (Hons.) Management Mathematics Faculty of Computer and Mathematical Sciences

July 2020

STUDENT'S DECLARATION

I certify that this report and the research to which it refers are the product of my own work and that any ideas or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

ROSIZATUN NAJLIN BINTI ROSLI 2017755833

AUGUST 5, 2020

ABSTRACT

Dengue fever is one of the fast-viral diseases that occur around the world. The Ministry of Health Malaysia stated that dengue fever is one of the viral diseases spread by mosquitoes with infected bites. Infection by this type of mosquitoes can lead to dengue fever or other illnesses, such as Malaria and Zika fever. By the end of the year 2019, the total number of dengue cases was 130101 recorded. Therefore, there is a need of having a mathematical model to make observations on the outbreak of the infectious disease. This study aims to develop a mathematical model for the dengue outbreak in Malaysia. Secondary data collected from Pusat Informatik Kesihatan Malaysia and Jabatan Perangkaan Malaysia was used in this study. The data consists of the number of cases, the number of deaths, and the number of populations within the years 2013 to 2017. Susceptible-Exposed-Infected-Recovered (SEIR) mathematical model was used in this study to calculate the number of susceptible, the number of exposed, number of infected, and the number of recovered in the population. Maple is used to generating the graph and result of the SEIR model. The result shows that the number of susceptible approaching zero and pass through zero. Next, the number of the exposed individual eventually decreased later. This means that the people are aware of the transmission of dengue fever and they build awareness in controlling dengue fever. The number of infected individuals decreases, and the number of recovered individuals increases. Then, the longevity of the disease has been calculated by using basic reproductive ratio and the result shows that the disease will continue to grow in the future since dengue is an endemic disease.

Keywords: Susceptible-Exposed-Infected-Recovered (SEIR), Dengue outbreak in Malaysia, Basic Reproductive Ratio

TABLE OF CONTENTS

CONTENTS	PAGE
SUPERVISOR'S APPROVAL	ii
DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
LIST OF TABLES	ix

CHAPTER ONE: INTRODUCTION

1.1	Background of the Study	1
1.2	Problem Statement	3
1.3	Objective of the Study	4
1.4	Scope of the Study	4
1.5	Significance of the Study	4

CHAPTER TWO: LITERATURE REVIEW

2.1	SEIR Model	6
2.2	Application of the SEIR Model	6
2.3	Method Used in Studying Dengue	8
2.4	SEIR Model in Studying Dengue	9
2.5	Summary	9

CHAPTER THREE: RESEARCH METHODOLOGY

3.1	Data Collection Method		10
3.2	Data A	Analysis Method	10
	3.2.1	Formulation of the Basic SEIR Model	10
	3.2.2	SEIR Model with Demographic Effects	12
	3.2.3	Parameters of SEIR Model	12
	3.2.4	Solution of the Parameters	14
	3.2.5	Equilibrium Point for the SEIR Model in Malaysia	14
	3.2.6	Solution of the SEIR Model	18
	3.2.7	Basic Reproductive Ratio	19
3.3	Summ	ary	20

CHAPTER FOUR: RESULTS AND DISCUSSIONS

4.1	Analysis of Data	21
4.2	Preprocessing of the Data	21
4.3	Analysis of the SEIR Value	27
4.4	Basic Reproductive Ratio	30
4.5	Summary	30

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

4	5.1	Conclusions	31
4	5.2	Recommendations	32
REFERENCES		34	
APPEN	DICE	S	
APPENDIX A: MAPLE COMMAND		36	