SYNTHESIS, CHARACTERIZATION AND ANTI-CORROSION SCREENING OF Cu(II) AND Ag(I) 4-ACETYLPYRIDINE 4-ETHYL-3-THIOSEMICARBAZONES COMPLEXES

NUR NADIRA HAZANI

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JULY 2016

This Final Year Project Report entitled "Synthesis, Characterization and Anti-Corrosion Screening of Cu(II) and Ag(I) 4-Acetylpyridine 4-Ethyl-3-Thiosemicarbazones Complexes" was submitted by Nur Nadira Hazani, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

> Nur Nadia Dzulkifli Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Dr. Sheikh Ahmad Izaddin Sheikh Mohd Ghazali Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan Mazni Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Date : _____

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	V
LIST OF FIGURE	vi
LIST OF ABBREVIATIONS	viii
ABSTRACT	Х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
	1.1.1 Thiosemicarbazone	2
	1.1.2 Metals	4
	1.1.3 Corrosion	6
1.2	Problem Statement	7
1.3	Significance of the Study	
1.4	Objectives of the Study	9

CHAPTER 2 LITERATURE REVIEW

2.1	Synthesis of Schiff Bases and Metal Complexes		10
2.2	Chara	Characterization of Schiff Bases and Metal Complexes	
	2.2.1	Elemental Analysis	17
	2.2.2	Fourier Transform Infrared (FT-IR)	18
	2.2.3	Ultraviolet-visible (UV-Vis)	20
	2.2.4	X-ray Crystallographic Studies	21
2.3	Application		21
	2.3.1	Anti-corrosion	21
	2.3.2	Heavy Metal Removal	22
	2.3.3	Antibacterial Activity	23
	2.3.4	Antiviral Activity	24
	2.3.5	Anticancer	25

CHAPTER 3 METHODOLOGY

Mater	als	27
3.1.1	Chemicals	27
3.1.2	Apparatus	27
3.1.3	Instruments	27
Methods		
3.2.1	Synthesis of 4-acetylpyridine 4-ethyl-3-thiosemicarbazone	28
3.2.2	Synthesis of Cu(II) complex	30
	3.1.1 3.1.2 3.1.3 Metho 3.2.1	Materials 3.1.1 Chemicals 3.1.2 Apparatus 3.1.3 Instruments Methods 3.2.1 Synthesis of 4-acetylpyridine 4-ethyl-3-thiosemicarbazone 3.2.2 Synthesis of Cu(II) complex

	3.2.3	Synthesis of Ag(I) complex	30
3.3 (Chara	cterization	30
	3.3.1	Elemental Analysis (CHNS)	30
	3.3.2	Fourier-Transform Infrared (FT-IR)	31
	3.3.3	Ultraviolet-visible (UV-Vis)	31
	3.3.4	X-ray Crytalographic Studies	31
	3.3.5	Melting Point	32
	3.3.6	Gravimetric Analysis	32
	3.3.7	Molar Conductivity	32
3.4	Corros	sion Inhibition Study	33
	3.4.1	Preparation of Solution	33
	3.4.2	Weight Loss Method	33

CHAPTER 4 RESULT AND DISCUSSION

4.1	Synthesis of Ligand and Complexes	35
4.2	Physico-chemical Analysis	36
4.3	Infrared Spectral Data	38
4.4	UV-Vis Spectra	44
4.5	Gravimetric Analysis	48
4.6	Molar Conductivity Measurement	49
4.7	X-ray Crystallographic	49
4.8	Corrosion Inhibition Study	52

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	57
5.2	Recommendations	59

CITED REFERENCES	61
APPENDICES	68
CURRICULUM VITAE	75

ABSTRACT

SYNTHESIS, CHARACTERIZATION AND ANTI-CORROSION SCREENING OF Cu(II) AND Ag(I) 4-ACETYLPYRIDINE 4-ETHYL-3-THIOSEMICARBAZONES COMPLEXES

4-acetylpyridine 4-ethyl-3-thiosemicarbazone [4Acpy4E3TSC], Cu(II) and Ag(I) complexes were successfully synthesized by condensation method. The compounds were characterized by elemental analysis, FT-IR, UV-Vis, gravimetric analysis, molar conductivity, X-ray crystallographic study and melting point. The results of the elemental analysis for the compound were in good agreement with the theoretical value. The melting points of the complexes were higher than ligand, as expected. The FT-IR spectral data implied a bidentate bonding of 4Acpy4E3TSC to Cu(II) and Ag(I) ion through azomethine nitrogen and thiocarbonyl sulfur. The UV-Vis analysis showed two types of transition, which are $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ in ligand and complexes. The spectra of complexes shifting from ligand spectral proved the coordination to metal ions. UV-Vis spectral are showed that the Cu(II) complex undergo *d-d* transitions as can be seen from the presence of bands > 400 nm in UV-Vis spectral. The molar conductivity showed complex electrolyte the Cu(II) was 1:1 with formula [Cu(4Acpy4E3TSC)(3H₂O)Cl]Cl and Ag(I) complex was non-electrolyte with formula Ag(4Acpy4E3TSC)(6H₂O). The gravimetric analysis showed the percentage of Cu(II) was 12.60 % and the percentage of Ag(I) was 26.48 %. The 4Acpy4E3TSC ligand was successfully produced single crystal that suitable for the X-ray crystallographic studies. X-ray crystallographic structures for 4Acpy4E3TSC showed that ligand is in the solid state, the compound existed in the thione form.4Acpy4E3TSC adopted monoclinic system, a = 10.5922(7), b =8.9597(6), c = 13.0407 Å, $\alpha = 90$, $\beta = 106.025(2)$, and $\delta = 90^{\circ}$ and Z = 4. The corrosion inhibition study showed that the inhibition efficiency increases in the sequence [copper(II) complex] > ligand > [silver(I) complex]. The inhibitor efficiency tend to increase as inhibitor concentration increase.