CHARACTERIZATION OF NICKEL ZINC OXIDE ANODE MATERIALS SYNTHESIZED BY A HYDROTHERMAL METHOD

NURNAZURAH DHABITAH BT ZAINAL ABIDIN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

TABLE OF CONTENTS

ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLE	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	X
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background study	1
1.2	Problem statement	3
1.3	Significance of study	3
1.4	Objectives of Study	3

CHAPTER 2 LITERATURE REVIEW

2.1	History of battery	5
2.2	Lithium-ion battery	6
	2.2.1 Sodium-ion battery	7
2.3	Anode materials	9
2.4	Hydrothermal	10

CHAPTER 3 METHODOLOGY

3.1	Mater	ials	13
	3.1.1	Chemicals	13
	3.1.2	Apparatus	13
		Instruments	13
3.2	Metho	ods	14
	3.2.1	Synthesizing NiZn ₂ O ₄ anode material though hydrothermal me	ethod
			14
	3.2.2	Characterization of NiZn ₂ O ₄ anode material	15
		3.2.2.1 Scanning electron microscopy-energy dispersive	
		spectroscopy	15
		3.2.2.2 X-ray diffractometry (XRD)	15
		3.2.2.3 Thermogravimetric analysis (TGA)	16
		3.2.2.4 Attenuated total reflection-fourier transform infra-red	
		(ATR-FTIR)	17

CHAPTER 4 RESULT AND DISCUSSION

18

4.1.1	Scanning electron microscopy-energy dispersive spectroscopy	
	(SEM-EDS)	18
	4.1.1.1 Energy dispersive spectroscopy (EDS)	20
4.1.2	X-ray diffractometry (XRD)	22
4.1.3	Thermogravimetric analysis (TGA)	23
4.1.4	Attenuated total reflection-fourier transform infra-red (ATR-FI	TIR)
		24

CHAPTER 5 CONCLUSION AND RECOMMENDATION 26

CITED REFEENCES	28
APPENDICES	31
CURRICULUM VITAE	32

LIST OF TABLE

Table	Caption	Page
4.1	EDS result of powdered NiZn ₂ O ₄ anode material	22
4.2	ATR-FTIR result of powdered NiZn ₂ O ₄ anode material	24

ABSTRACT

CHARACTERIZATION OF NICKEL ZINC OXIDE ANODE MATERIALS SYNTHESIZED BY A HYDROTHERMAL METHOD

NiZn₂O₄ samples anode materials were prepared by hydrothermal reaction and its physical characterization was being analysed by using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray diffractometry (XRD), thermogravimetric analysis (TGA) and attenuated total reflection-fourier transform infra-red (ATR-FTIR. The synthesized anode materials morphology was observed by SEM-EDS and the result show the rough surface of sample and irregular shape of sample as well as the composition of element oxygen, sulphur, nickel and zinc as the major elements in NiZn₂O₄. Sharp diffraction peaks obtained in XRD indicate good crystallinity of the sample. The TGA shows the starting loss was discovered as water that contains in the sample turn the percentage decrease. Also, the endothermic and exothermic effect was determined at the second phase and late phase of TGA. The FTIR spectra of NiZn₂O₄ samples are in the range 1712.97 cm⁻¹ to 535.42 cm⁻¹. The v(C–O) of ligand is observed at 1260.05 cm⁻¹. The strong band with a shoulder noticed at 1712.97 cm⁻¹ can be attributed to v(C=O) of the lactone carbonyl group. In this study, the hydrothermal conditions such as alkaline concentration, reaction temperature and duration time have an important influence on the product structure and the performance of the electrode prepared with sample.